Solvent reorganization controls the rate of proton transfer from neat alcohol solvents to singlet diphenylcarbene

被引:63
作者
Peon, J [1 ]
Polshakov, D [1 ]
Kohler, B [1 ]
机构
[1] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA
关键词
D O I
10.1021/ja017485r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Femtosecond transient absorption spectroscopy was used to study singlet diphenylcarbene generated by photodissociation of diphenyldiazomethane with a UV pulse at 266 nm. Absorption by singlet diphenylcarbene was detected and characterized for the first time. Similar band shapes were observed in acetonitrile and in cyclohexane with lambda(max) approximate to 370 nm. The singlet absorption decays by intersystem crossing to triplet diphenylcarbene at rates that agree with previous measurements. The singlet absorption band is completely formed 1 ps after the pump pulse. It is preceded by a strong and broad absorption band, which is tentatively assigned to excited-state absorption by a singlet diazo excited state. In neat alcohol solvents the growth and decay of the diphenymethyl cation was observed. This species is formed by proton transfer from an alcohol molecule to singlet diphenylcarbene. Since a shell of solvent molecules surrounds each nascent carbene, the intrinsic rate of protonation in the absence of diffusion could be measured. In methanol, proton transfer occurs with a time constant of 9.0 ps, making this the fastest known intermolecular proton-transfer reaction to carbon. In O-deuterated methanol proton transfer occurs in 15.0 ps. Slower rates were observed in the longer alcohols. The protonation times correlate reasonably well with solvation times in these alcohols, suggesting that solvent fluctuations are the rate-limiting step. In all alcohols studied, the carbocations decay on a somewhat slower time scale to yield diphenylalkyl ethers. In methanol and ethanol the rate of decay is determined by reaction with neutral solvent nucleophiles. There is evidence in 2-propanol that geminate reaction within the initial ion pair is faster than reaction with solvent, No isotope effect was observed for the reaction of the diphenylmethyl carbocation in methanol. Using comparative actinometry the quantum yield of protonation was measured. In methanol, the quantum yield of carbocations reaches a maximum value of 0.18 approximately 18 ps after the pump pulse. According to our analysis, 30% of the photoexcited diazo precursor molecules are eventually protonated. Somewhat lower protonation efficiencies are observed in the other alcohols. Because the primary quantum yield for formation of singlet diphenylcarbene is still unknown, the importance of reaction channels that might exist in addition to protonation cannot be determined at present. Singlet carbenes are powerful, photogenerated bases that open new possibilities for fundamental studies of proton transfer in solution.
引用
收藏
页码:6428 / 6438
页数:11
相关论文
共 72 条
[61]   Production of carbenium ions from carbenes by protonation [J].
Steenken, S .
PURE AND APPLIED CHEMISTRY, 1998, 70 (10) :2031-2038
[62]   PROTON-TRANSFER KINETICS OF 3-HYDROXYFLAVONE - SOLVENT EFFECTS [J].
STRANDJORD, AJG ;
BARBARA, PF .
JOURNAL OF PHYSICAL CHEMISTRY, 1985, 89 (11) :2355-2361
[63]   RATE CONSTANTS FOR SOME ELECTROPHILIC REACTIONS OF BENZYL, BENZHYDRYL, AND TRITYL CATIONS IN SOLUTION [J].
SUJDAK, RJ ;
JONES, RL ;
DORFMAN, LM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1976, 98 (16) :4875-4879
[64]   INTERSYSTEM CROSSING OF BENZOPHENONE BY FEMTOSECOND TRANSIENT GRATING SPECTROSCOPY [J].
TAMAI, N ;
ASAHI, T ;
MASUHARA, H .
CHEMICAL PHYSICS LETTERS, 1992, 198 (3-4) :413-418
[65]   ABSORPTION EMISSION AND EXCITATION SPECTRA OF DIARYLMETHYLENES [J].
TROZZOLO, AM ;
GIBBONS, WA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1967, 89 (02) :239-&
[66]   ABSOLUTE RATE CONSTANTS FOR ADDITIONS OF PHENYLCHLOROCARBENE TO ALKENES [J].
TURRO, NJ ;
BUTCHER, JA ;
MOSS, RA ;
GUO, W ;
MUNJAL, RC ;
FEDORYNSKI, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1980, 102 (25) :7576-7578
[67]   Nanosecond time-resolved fluorescence spectroscopy in the physical chemistry laboratory: Formation of the pyrene excimer in solution [J].
Van Dyke, DA ;
Pryor, BA ;
Smith, PG ;
Topp, MR .
JOURNAL OF CHEMICAL EDUCATION, 1998, 75 (05) :615-620
[68]   IDENTITY AND YIELD OF POSITIVE CHARGE CENTERS IN IRRADIATED CHLORO HYDROCARBON LIQUIDS AND THE RATES OF THEIR INTERACTION WITH SOLUTE MOLECULES [J].
WANG, Y ;
TRIA, JJ ;
DORFMAN, LM .
JOURNAL OF PHYSICAL CHEMISTRY, 1979, 83 (15) :1946-1951
[69]   REACTIONS OF EXCITED TRIPLET DIPHENYLCARBENE STUDIED WITH PICOSECOND LASERS [J].
WANG, Y ;
SITZMANN, EV ;
NOVAK, F ;
DUPUY, C ;
EISENTHAL, KB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1982, 104 (11) :3238-3239
[70]   USE OF A PHOTOREVERSIBLE FULGIDE AS AN ACTINOMETER IN ONE-LASER AND 2-LASER EXPERIMENTS [J].
WINTGENS, V ;
JOHNSTON, LJ ;
SCAIANO, JC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1988, 110 (02) :511-517