Preparation and electrochemical characterization of anatase nanorods for lithium-inserting electrode material

被引:173
作者
Gao, XP [1 ]
Zhu, HY
Pan, GL
Ye, SH
Lan, Y
Wu, F
Song, DY
机构
[1] Nankai Univ, Inst New Energy Chem Mat, Tianjin 300071, Peoples R China
[2] Univ Sydney, Electron Microscope Unit, Sydney, NSW 2006, Australia
[3] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia
[4] Beijing Inst Technol, Sch Chem Engn & Environm, Beijing 100081, Peoples R China
关键词
D O I
10.1021/jp036821i
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The titanium oxides with one-dimensional (ID) nanostructure are of significance in electrochemical lithium insertion owing to their high specific surface area and pore volume. In this study, nanorods with diameters of ca. 3-5 nm and lengths of 40-60 nm were prepared through the hydrothermal treatment of a hydrolysate obtained from TiCl4 with caustic soda as demonstrated by HRTEM. These nanorods are protonated titanate and can be converted into the anatase (TiO2) nanorods by a calcination at 400 degreesC. The anatase nanorods have a large specific surface area of 314 m(2)/g and a high pore volume of 1.514 cm(3)/g, respectively. The anatase TiO2 nanorods exhibit a large initial electrochemical lithium insertion capacity of 206 mAh/g and good reversibility. The splitting and multi peaks in cyclic voltammograms associated with differing site occupations are ascribed to the formation of the imperfection of the TiO2 nanorod lattice, which facilitates the transport of lithium in surface defects and bulk materials.
引用
收藏
页码:2868 / 2872
页数:5
相关论文
共 31 条
[1]   ANATASE AS A CATHODE MATERIAL IN LITHIUM-ORGANIC ELECTROLYTE RECHARGEABLE BATTERIES [J].
BONINO, F ;
BUSANI, L ;
LAZZARI, M ;
MANSTRETTA, M ;
RIVOLTA, B ;
SCROSATI, B .
JOURNAL OF POWER SOURCES, 1981, 6 (03) :261-270
[2]   The structure of trititanate nanotubes [J].
Chen, Q ;
Du, GH ;
Zhang, S ;
Peng, LM .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 2002, 58 :587-593
[3]   Investigation of ramsdellite titanates as possible new negative electrode materials for Li batteries [J].
Gover, RKB ;
Tolchard, JR ;
Tukamoto, H ;
Murai, T ;
Irvine, JTS .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (12) :4348-4353
[4]   Li insertion in thin film anatase TiO2:: identification of a two-phase regime with photoelectron spectroscopy [J].
Henningsson, A ;
Andersson, MP ;
Uvdal, P ;
Siegbahn, H ;
Sandell, A .
CHEMICAL PHYSICS LETTERS, 2002, 360 (1-2) :85-90
[5]   Formation of a titanium dioxide nanotube array [J].
Hoyer, P .
LANGMUIR, 1996, 12 (06) :1411-1413
[6]   Effect of brookite phase on the anatase-rutile transition in titania nanoparticles [J].
Hu, Y ;
Tsai, HL ;
Huang, CL .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2003, 23 (05) :691-696
[7]   ROCKING CHAIR LITHIUM BATTERY BASED ON NANOCRYSTALLINE TIO2 (ANATASE) [J].
HUANG, SY ;
KAVAN, L ;
EXNAR, I ;
GRATZEL, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (09) :L142-L144
[8]   Direct preparation of anatase TiO2 nanotubes in porous alumina membranes [J].
Imai, H ;
Takei, Y ;
Shimizu, K ;
Matsuda, M ;
Hirashima, H .
JOURNAL OF MATERIALS CHEMISTRY, 1999, 9 (12) :2971-2972
[9]   Formation of titanium oxide nanotube [J].
Kasuga, T ;
Hiramatsu, M ;
Hoson, A ;
Sekino, T ;
Niihara, K .
LANGMUIR, 1998, 14 (12) :3160-3163
[10]  
Kasuga T, 1999, ADV MATER, V11, P1307, DOI 10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO