Preparation and electrochemical characterization of anatase nanorods for lithium-inserting electrode material

被引:173
作者
Gao, XP [1 ]
Zhu, HY
Pan, GL
Ye, SH
Lan, Y
Wu, F
Song, DY
机构
[1] Nankai Univ, Inst New Energy Chem Mat, Tianjin 300071, Peoples R China
[2] Univ Sydney, Electron Microscope Unit, Sydney, NSW 2006, Australia
[3] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia
[4] Beijing Inst Technol, Sch Chem Engn & Environm, Beijing 100081, Peoples R China
关键词
D O I
10.1021/jp036821i
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The titanium oxides with one-dimensional (ID) nanostructure are of significance in electrochemical lithium insertion owing to their high specific surface area and pore volume. In this study, nanorods with diameters of ca. 3-5 nm and lengths of 40-60 nm were prepared through the hydrothermal treatment of a hydrolysate obtained from TiCl4 with caustic soda as demonstrated by HRTEM. These nanorods are protonated titanate and can be converted into the anatase (TiO2) nanorods by a calcination at 400 degreesC. The anatase nanorods have a large specific surface area of 314 m(2)/g and a high pore volume of 1.514 cm(3)/g, respectively. The anatase TiO2 nanorods exhibit a large initial electrochemical lithium insertion capacity of 206 mAh/g and good reversibility. The splitting and multi peaks in cyclic voltammograms associated with differing site occupations are ascribed to the formation of the imperfection of the TiO2 nanorod lattice, which facilitates the transport of lithium in surface defects and bulk materials.
引用
收藏
页码:2868 / 2872
页数:5
相关论文
共 31 条
[21]   Synthesis and characterization of ion-exchangeable titanate nanotubes [J].
Sun, XM ;
Li, YD .
CHEMISTRY-A EUROPEAN JOURNAL, 2003, 9 (10) :2229-2238
[22]   Multiple li positions inside oxygen octahedra in lithiated TiO2 anatase [J].
Wagemaker, M ;
Kearley, GJ ;
van Well, AA ;
Mutka, H ;
Mulder, FM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (03) :840-848
[23]   Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase [J].
Wagemaker, M ;
Kentgens, APM ;
Mulder, FM .
NATURE, 2002, 418 (6896) :397-399
[24]   Microstructure and formation mechanism of titanium dioxide nanotubes [J].
Wang, YQ ;
Hu, GQ ;
Duan, XF ;
Sun, HL ;
Xue, QK .
CHEMICAL PHYSICS LETTERS, 2002, 365 (5-6) :427-431
[25]  
WANG ZL, 2002, HDB NANOPHASE NANOST, V1, P12
[26]   NORMAL-BUTYLLITHIUM - EFFECTIVE, GENERAL CATHODE SCREENING AGENT [J].
WHITTINGHAM, MS ;
DINES, MB .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1977, 124 (09) :1387-1388
[27]   Crystallization of anatase from amorphous titania using the hydrothermal technique: Effects of starting material and temperature [J].
Yanagisawa, K ;
Ovenstone, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (37) :7781-7787
[28]   Formation mechanism of TiO2 nanotubes [J].
Yao, BD ;
Chan, YF ;
Zhang, XY ;
Zhang, WF ;
Yang, ZY ;
Wang, N .
APPLIED PHYSICS LETTERS, 2003, 82 (02) :281-283
[29]   Titanium oxide nanoribbons [J].
Yuan, ZY ;
Colomer, JF ;
Su, BL .
CHEMICAL PHYSICS LETTERS, 2002, 363 (3-4) :362-366
[30]   Morphological structure and physicochemical properties of nanotube TiO2 [J].
Zhang, SL ;
Zhou, JF ;
Zhang, ZJ ;
Du, ZL ;
Vorontsov, AV ;
Jin, ZS .
CHINESE SCIENCE BULLETIN, 2000, 45 (16) :1533-1536