Asymptotic convergence of an SMO algorithm without any assumptions

被引:91
作者
Lin, CJ [1 ]
机构
[1] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 106, Taiwan
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2002年 / 13卷 / 01期
关键词
asymptotic convergence; decomposition; support vector machine (SVM);
D O I
10.1109/72.977319
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The asymptotic convergence or Lin can he applied to a modified SMO algorithm by Keerthi et al. with some assumptions. Here we show that for this algorithm those assumptions are not necessary.
引用
收藏
页码:248 / 250
页数:3
相关论文
共 9 条
[1]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[2]   SVMTorch: Support vector machines for large-scale regression problems [J].
Collobert, R ;
Bengio, S .
JOURNAL OF MACHINE LEARNING RESEARCH, 2001, 1 (02) :143-160
[3]  
Joachims T, 1999, ADVANCES IN KERNEL METHODS, P169
[4]   Convergence of a generalized SMO algorithm for SVM classifier design [J].
Keerthi, SS ;
Gilbert, EG .
MACHINE LEARNING, 2002, 46 (1-3) :351-360
[5]   Improvements to Platt's SMO algorithm for SVM classifier design [J].
Keerthi, SS ;
Shevade, SK ;
Bhattacharyya, C ;
Murthy, KRK .
NEURAL COMPUTATION, 2001, 13 (03) :637-649
[6]   On the convergence of the decomposition method for support vector machines [J].
Lin, CJ .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (06) :1288-1298
[7]  
OSUNA E, 1997, PROC CVPR IEEE, P130, DOI DOI 10.1109/CVPR.1997.609310
[8]  
Platt JC, 1999, ADVANCES IN KERNEL METHODS, P185
[9]  
Vapnik V, 1998, STAT LEARNING THEORY, V3, DOI DOI 10.1007/978-1-4419-1428-6_5864