Identification and function of hypoxia-response genes in Drosophila melanogaster

被引:68
作者
Liu, GW [1 ]
Roy, J [1 ]
Johnson, EA [1 ]
机构
[1] Univ Oregon, Inst Mol Biol, Eugene, OR 97403 USA
关键词
gene expression; microarray; low oxygen; paralysis; viability;
D O I
10.1152/physiolgenomics.00262.2005
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Hypoxia, an insufficient level of oxygen in the cell, occurs during normal activity and also in pathological conditions such as ischemia and tumorigenesis. Although many hypoxia-response genes have been identified, an understanding of the functional role for these genes in the living animal is lacking. Here we present a genome-wide study of gene expression changes during hypoxia and then functionally test a subset of these genes for roles in survival and recovery from hypoxia. We found 79 genes with increased mRNA levels when adult flies were treated with 0.5% O-2 for 6 h. A subset of these genes had detectably increased levels in as short as 1 h of low-oxygen treatment. Mild hypoxia levels resulted in an increase in transcription levels for only 20 genes. Viability during hypoxia and recovery time from hypoxia-induced paralysis was examined in flies with a reduction in activity in hypoxia-response genes. The observed decreased viability and increased recovery time from paralysis in many of the lines demonstrate that the increased transcript levels seen after hypoxia are important for the response to low oxygen.
引用
收藏
页码:134 / 141
页数:8
相关论文
共 24 条
[1]   Gene expression during the life cycle of Drosophila melanogaster [J].
Arbeitman, MN ;
Furlong, EEM ;
Imam, F ;
Johnson, E ;
Null, BH ;
Baker, BS ;
Krasnow, MA ;
Scott, MP ;
Davis, RW ;
White, KP .
SCIENCE, 2002, 297 (5590) :2270-2275
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]   A conserved family of prolyl-4-hydroxylases that modify HIF [J].
Bruick, RK ;
McKnight, SL .
SCIENCE, 2001, 294 (5545) :1337-1340
[4]   Role of HIF-1α or in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis [J].
Carmeliet, P ;
Dor, Y ;
Herbert, JM ;
Fukumura, D ;
Brusselmans, K ;
Dewerchin, M ;
Neeman, M ;
Bono, F ;
Abramovitch, R ;
Maxwell, P ;
Koch, CJ ;
Ratcliffe, P ;
Moons, L ;
Jain, RK ;
Collen, D ;
Keshet, E .
NATURE, 1998, 394 (6692) :485-490
[5]   Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis (vol 394, pg 485, 1998) [J].
Carmeliet, P ;
Dor, Y ;
Herbert, JM ;
Fukumura, D ;
Brusselmans, K ;
Dewerchin, M ;
Neeman, M ;
Bono, F ;
Abramovitch, R ;
Maxwell, P ;
Koch, CJ ;
Ratcliffe, P ;
Moons, L ;
Jain, RK ;
Collen, D ;
Keshert, E .
NATURE, 1998, 395 (6701) :525-525
[6]   Expression of Drosophila trehalose-phosphate synthase in HEK-293 cells increases hypoxia tolerance [J].
Chen, QF ;
Behar, KL ;
Xu, T ;
Fan, CH ;
Haddad, GG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (49) :49113-49118
[7]   Role of trehalose phosphate synthase in anoxia tolerance and development in Drosophila melanogaster [J].
Chen, QF ;
Ma, E ;
Behar, KL ;
Xu, T ;
Haddad, GG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (05) :3274-3279
[8]  
Forsythe JA, 1996, MOL CELL BIOL, V16, P4604
[9]   Induction of hypoxia-inducible factor-1, erythropoietin, vascular endothelial growth factor, and glucose transporter-1 by hypoxia: Evidence against a regulatory role for Src kinase [J].
Gleadle, JM ;
Ratcliffe, PJ .
BLOOD, 1997, 89 (02) :503-509
[10]   Neuronal tolerance to O2 deprivation in Drosophila:: Novel approaches using genetic models [J].
Haddad, GG ;
Ma, EB .
NEUROSCIENTIST, 2001, 7 (06) :538-550