Caspases: the executioners of apoptosis

被引:4048
作者
Cohen, GM
机构
[1] MRC Toxicology Unit, Hodgkin Building, University of Leicester, Leicester LE1 9HN
关键词
D O I
10.1042/bj3260001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Apoptosis is a major form of cell death, characterized initially by a series of stereotypic morphological changes. In the nematode Caenorhabditis elegans, the gene ced-3 encodes a protein required for developmental cell death. Since the recognition that CED-3 has sequence identity with the mammalian cysteine protease interleukin-Ip-converting enzyme (ICE), a family of at least 10 related cysteine proteases has been identified. These proteins are characterized by almost absolute specificity for aspartic acid in the P-1 position. All the caspases (ICE-like proteases) contain a conserved QACXG (where X is R, Q or G) pentapeptide active-site motif. Caspases are synthesized as inactive proenzymes comprising an N-terminal peptide (prodomain) together with one large and one small subunit. The crystal structures of both caspase-1 and caspase-3 show that the active enzyme is a heterotetramer, containing two small and two large subunits, Activation of caspases during apoptosis results in the cleavage of critical cellular substrates, including poly(ADP-ribose) polymerase and lamins, so precipitating the dramatic morphological changes of apoptosis. Apoptosis induced by CD95 (Fas/APO-1) and tumour necrosis factor activates caspase-8 (MACH/FLICE/Mch5), which contains an N-terminus with FADD (Fas-associating protein with death domain)-like death effector domains, so providing a direct link between cell death receptors and the caspases. The importance of caspase prodomains in the regulation of apoptosis is further highlighted by the recognition of adapter molecules, such as RAIDD [receptor-interacting protein (RIP)-associated ICH-1/CED-3-homologous protein with a death domain]/CRADD (caspase and RIP adapter with death domain), which binds to the prodomain of caspase-2 and recruits it to the signalling complex. Cells undergoing apoptosis following triggering of death receptors execute the death programme by activating a hierarchy of caspases, with caspase-8 and possibly caspase-10 being at or near the apex of this apoptotic cascade.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 159 条
[31]  
COHEN JJ, 1992, ANNU REV IMMUNOL, V10, P267, DOI 10.1146/annurev.iy.10.040192.001411
[32]  
CRIEKINGE WV, 1996, J BIOL CHEM, V271, P27245
[33]   Specific cleavage of alpha-fodrin during Fas- and tumor necrosis factor-induced apoptosis is mediated by an interleukin-1 beta-converting enzyme Ced-3 protease distinct from the poly(ADP-ribose) polymerase protease [J].
Cryns, VL ;
Bergeron, L ;
Zhu, H ;
Li, HL ;
Yuan, JY .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (49) :31277-31282
[34]   ACTIVATION OF THE APOPTOTIC PROTEASE CPP32 BY CYTOTOXIC T-CELL-DERIVED GRANZYME-B [J].
DARMON, AJ ;
NICHOLSON, DW ;
BLEACKLEY, RC .
NATURE, 1995, 377 (6548) :446-448
[35]   Activation of the CPP32 protease in apoptosis induced by 1-beta-D-arabinofuranosylcytosine and other DNA-damaging agents [J].
Datta, R ;
Banach, D ;
Kojima, H ;
Talanian, RV ;
Alnemri, ES ;
Wong, WW ;
Kufe, DW .
BLOOD, 1996, 88 (06) :1936-1943
[36]   Activation of a CrmA-insensitive, p35-sensitive pathway in ionizing radiation-induced apoptosis [J].
Datta, R ;
Kojima, H ;
Banach, D ;
Bump, NJ ;
Talanian, RV ;
Alnemri, ES ;
Weichselbaum, RR ;
Wong, WW ;
Kufe, DW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (03) :1965-1969
[37]   RAIDD is a new 'death' adaptor molecule [J].
Duan, H ;
Dixit, VM .
NATURE, 1997, 385 (6611) :86-89
[38]   ICE-LAP3, a novel mammalian homologue of the Caenorhabditis elegans cell death protein ced-3 is activated during fas- and tumor necrosis factor-induced apoptosis [J].
Duan, HJ ;
Chinnaiyan, AM ;
Hudson, PL ;
Wing, JP ;
He, WW ;
Dixit, VM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (03) :1621-1625
[39]   ICE-LAP6, a novel member of the ICE/Ced-3 gene family, is activated by the cytotoxic T cell protease granzyme B [J].
Duan, HJ ;
Orth, K ;
Chinnaiyan, AM ;
Poirier, GG ;
Froelich, CJ ;
He, WW ;
Dixit, VM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (28) :16720-16724
[40]   MECHANISMS AND FUNCTIONS OF CELL-DEATH [J].
ELLIS, RE ;
YUAN, JY ;
HORVITZ, HR .
ANNUAL REVIEW OF CELL BIOLOGY, 1991, 7 :663-698