Energetic landscape of α-lytic protease optimizes longevity through kinetic stability

被引:139
作者
Jaswal, SS
Sohl, JL
Davis, JH
Agard, DA [1 ]
机构
[1] Univ Calif San Francisco, Howard Hughes Med Inst, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1038/415343a
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
During the evolution of proteins the pressure to optimize biological activity is moderated by a need for efficient folding. For most proteins, this is accomplished through spontaneous folding to a thermodynamically stable and active native state. However, in the extracellular bacterial alpha-lytic protease (alphaLP) these two processes have become decoupled. The native state of alphaLP is thermodynamically unstable, and when denatured, requires millennia (t(1/2), similar to 1,800 years)(1) to refold. Folding is made possible by an attached folding catalyst, the pro-region, which is degraded on completion of folding, leaving alphaLP trapped in its native state by a large kinetic unfolding barrier (t(1/2) similar to1.2 years)(1). alphaLP faces two very different folding landscapes: one in the presence of the pro-region controlling folding, and one in its absence restricting unfolding. Here we demonstrate that this separation of folding and unfolding pathways has removed constraints placed on the folding of thermodynamically stable proteins, and allowed the evolution of a native state having markedly reduced dynamic fluctuations. This, in turn, has led to a significant extension of the functional lifetime of alphaLP by the optimal suppression of proteolytic sensitivity.
引用
收藏
页码:343 / 346
页数:4
相关论文
共 24 条
[1]  
[Anonymous], FOLD DES
[2]   PRIMARY STRUCTURE EFFECTS ON PEPTIDE GROUP HYDROGEN-EXCHANGE [J].
BAI, YW ;
MILNE, JS ;
MAYNE, L ;
ENGLANDER, SW .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (01) :75-86
[3]   The role of pro regions in protein folding [J].
Baker, David ;
Shiau, Andrew K. ;
Agard, David A. .
CURRENT OPINION IN CELL BIOLOGY, 1993, 5 (06) :966-970
[4]   UNFOLDING FREE-ENERGY CHANGES DETERMINED BY THE LINEAR EXTRAPOLATION METHOD .2. INCORPORATION OF DELTA-G-DEGREES-N-U VALUES IN A THERMODYNAMIC CYCLE [J].
BOLEN, DW ;
SANTORO, MM .
BIOCHEMISTRY, 1988, 27 (21) :8069-8074
[5]   STRUCTURE OF INFLUENZA HEMAGGLUTININ AT THE PH OF MEMBRANE-FUSION [J].
BULLOUGH, PA ;
HUGHSON, FM ;
SKEHEL, JJ ;
WILEY, DC .
NATURE, 1994, 371 (6492) :37-43
[6]   A SPRING-LOADED MECHANISM FOR THE CONFORMATIONAL CHANGE OF INFLUENZA HEMAGGLUTININ [J].
CARR, CM ;
KIM, PS .
CELL, 1993, 73 (04) :823-832
[7]   Touring the landscapes: Partially folded proteins examined by hydrogen exchange [J].
Chamberlain, AK ;
Marqusee, S .
STRUCTURE, 1997, 5 (07) :859-863
[8]   Core structure of gp41 from the HIV envelope glycoprotein [J].
Chan, DC ;
Fass, D ;
Berger, JM ;
Kim, PS .
CELL, 1997, 89 (02) :263-273
[9]   Mechanisms and uses of hydrogen exchange [J].
Englander, SW ;
Sosnick, TR ;
Englander, JJ ;
Mayne, L .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1996, 6 (01) :18-23
[10]   Regulation of proteolytic activity by engineered tridentate metal binding loops [J].
Halfon, S ;
Craik, CS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (05) :1227-1228