Electrodeposited Cobalt-Sulfide Catalyst for Electrochemical and Photoelectrochemical Hydrogen Generation from Water

被引:516
作者
Sun, Yujie [1 ,4 ]
Liu, Chong [1 ]
Grauer, David C. [1 ,5 ]
Yano, Junko [6 ]
Long, Jeffrey R. [1 ,5 ]
Yang, Peidong [1 ,7 ]
Chang, Christopher J. [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA
[7] King Abdulaziz Univ, Ctr Excellence Adv Mat Res CEAMR, Jeddah 21589, Saudi Arabia
关键词
ACTIVE EDGE SITES; H-2; PRODUCTION; ELECTROCATALYTIC REDUCTION; MOLYBDENUM BORIDE; RECENT PROGRESS; EVOLUTION; MOS2; NICKEL; COMPLEX; MODEL;
D O I
10.1021/ja4094764
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A cobalt-sulfide (Co-S) film prepared via electrochemical deposition on conductive substrates is shown to behave as an efficient and robust catalyst for electrochemical and photoelectrochemical hydrogen generation from neutral pH water. Electrochemical experiments demonstrate that the film exhibits a low catalytic onset overpotential (eta) of 43 mV, a Tafel slope of 93 mV/dec, and near 100% Faradaic efficiency in pH 7 phosphate buffer. Catalytic current densities can approach 50 mA/cm(2) and activity is maintained for at least 40 h. The catalyst can also be electrochemically coated on silicon, rendering a water-compatible photoelectrochemical system for hydrogen production under simulated 1 sun illumination. The facile preparation of this Co-S film, along with its low overpotential, high activity, and long-term aqueous stability, offer promising features for potential use in solar energy applications.
引用
收藏
页码:17699 / 17702
页数:4
相关论文
共 76 条
[1]  
Andreiadis ES, 2013, NAT CHEM, V5, P48, DOI [10.1038/NCHEM.1481, 10.1038/nchem.1481]
[2]   Boron-Capped Tris(glyoximato) Cobalt Clathrochelate as a Precursor for the Electrodeposition of Nanoparticles Catalyzing H2 Evolution in Water [J].
Anxolabehere-Mallart, Elodie ;
Costentin, Cyrille ;
Fournier, Maxime ;
Nowak, Sophie ;
Robert, Marc ;
Saveant, Jean-Michel .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (14) :6104-6107
[3]   Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis? [J].
Artero, Vincent ;
Fontecave, Marc .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (06) :2338-2356
[4]   Splitting Water with Cobalt [J].
Artero, Vincent ;
Chavarot-Kerlidou, Murielle ;
Fontecave, Marc .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (32) :7238-7266
[5]   Artificial hydrogenases [J].
Barton, Bryan E. ;
Olsen, Matthew T. ;
Rauchfuss, Thomas B. .
CURRENT OPINION IN BIOTECHNOLOGY, 2010, 21 (03) :292-297
[6]   A Nickel(II)-Sulfur-Based Radical-Ligand Complex as a Functional Model of Hydrogenase [J].
Begum, Ameerunisha ;
Moula, Golam ;
Sarkar, Sabyasachi .
CHEMISTRY-A EUROPEAN JOURNAL, 2010, 16 (41) :12324-12327
[7]   Electrochemistry of macrocyclic cobalt(III/II) hexaamines: Electrocatalytic hydrogen evolution in aqueous solution [J].
Bernhardt, PV ;
Jones, LA .
INORGANIC CHEMISTRY, 1999, 38 (22) :5086-5090
[8]   Electrocatalytic reduction of protons to hydrogen by a water-compatible cobalt polypyridyl platform [J].
Bigi, Julian P. ;
Hanna, Tamara E. ;
Harman, W. Hill ;
Chang, Alicia ;
Chang, Christopher J. .
CHEMICAL COMMUNICATIONS, 2010, 46 (06) :958-960
[9]   THE MECHANISM OF THE CATHODIC HYDROGEN EVOLUTION REACTION [J].
BOCKRIS, JOM ;
POTTER, EC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1952, 99 (04) :169-186
[10]   Hydrogen evolution on nano-particulate transition metal sulfides [J].
Bonde, Jacob ;
Moses, Poul G. ;
Jaramillo, Thomas F. ;
Norskov, Jens K. ;
Chorkendorff, Ib .
FARADAY DISCUSSIONS, 2008, 140 :219-231