Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with superior rate performance

被引:93
作者
Chen, Shuai [1 ]
Wang, Miao [1 ]
Ye, Jianfeng [1 ]
Cai, Jinguang [1 ]
Ma, Yurong [1 ]
Zhou, Henghui [1 ]
Qi, Limin [1 ]
机构
[1] Peking Univ, Coll Chem, State Key Lab Struct Chem Unstable & Stable Speci, Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
tin dioxide; nanostructures; mesocrystals; hierarchical structures; lithium-ion batteries; HOLLOW NANOSTRUCTURES; ANODE MATERIALS; NANOSHEETS; NANOWIRES;
D O I
10.1007/s12274-013-0300-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A general method for facile kinetics-controlled growth of aligned arrays of mesocrystalline SnO2 nanorods on arbitrary substrates has been developed by adjusting supersaturation in a unique ternary solvent system comprising acetic acid, ethanol, and water. The hydrolysis processes of Sn(IV) as well as the nucleation and growth of SnO2 crystals were carefully controlled in the mixed solvents, leading to an exclusively heterogeneous nucleation on a substrate and the subsequent growth into mesocrystalline nanorod arrays. In particular, aligned arrays of hierarchically structured, [001]-oriented mesocrystalline SnO2 nanorods with four {110} lateral facets can be readily grown on Ti foil, as well as many other inert substrates such as fluoride-doped tin oxide (FTO), Si, graphite, and polytetrafluoroethylene (Teflon). Due to the unique combination of the mesocrystalline structure and the one-dimensional nanoarray structure, the obtained mesocrystalline SnO2 nanorod arrays grown on metallic Ti substrate exhibited an excellent rate performance with a high initial Coulombic efficiency of 65.6% and a reversible capacity of 720 mA center dot h/g at a charge/discharge rate of 10 C (namely, 7,820 mA/g) when used as an anode material for lithium-ion batteries.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 45 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[3]   Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO2 nanorod arrays [J].
Cai, Jinguang ;
Ye, Jianfeng ;
Chen, Suyue ;
Zhao, Xiaowei ;
Zhang, Dayong ;
Chen, Shuai ;
Ma, Yurong ;
Jin, Song ;
Qi, Limin .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (06) :7575-7581
[4]   Mesocrystals:: Inorganic superstructures made by highly parallel crystallization and controlled alignment [J].
Cölfen, H ;
Antonietti, M .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (35) :5576-5591
[5]   Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries [J].
Deng, Da ;
Kim, Min Gyu ;
Lee, Jim Yang ;
Cho, Jaephil .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (08) :818-837
[6]   One-Dimensional Hierarchical Structures Composed of Novel Metal Oxide Nanosheets on a Carbon Nanotube Backbone and Their Lithium-Storage Properties [J].
Ding, Shujiang ;
Chen, Jun Song ;
Lou, Xiong Wen .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (21) :4120-4125
[7]   SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties [J].
Ding, Shujiang ;
Luan, Deyan ;
Boey, Freddy Yin Chiang ;
Chen, Jun Song ;
Lou, Xiong Wen .
CHEMICAL COMMUNICATIONS, 2011, 47 (25) :7155-7157
[8]   Nanostructured materials for electrochemical energy conversion and storage devices [J].
Guo, Yu-Guo ;
Hu, Jin-Song ;
Wan, Li-Jun .
ADVANCED MATERIALS, 2008, 20 (15) :2878-2887
[9]   Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications [J].
Han, Yutao ;
Wu, Xiang ;
Ma, Yulin ;
Gong, Lihong ;
Qu, Fengyu ;
Fan, Hongjin .
CRYSTENGCOMM, 2011, 13 (10) :3506-3510
[10]   Additive-free synthesis of unique TiO2 mesocrystals with enhanced lithium-ion intercalation properties [J].
Hong, Zhensheng ;
Wei, Mingdeng ;
Lan, Tongbin ;
Jiang, Lilong ;
Cao, Guozhong .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (01) :5408-5413