The geomicrobiology of ore deposits

被引:162
作者
Southam, G [1 ]
Saunders, JA
机构
[1] Univ Western Ontario, Dept Earth Sci, London, ON N6A 5B7, Canada
[2] Auburn Univ, Dept Geol & Geog, Auburn, AL 36849 USA
关键词
D O I
10.2113/100.6.1067
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Bacterial metabolism, involving redox reactions with carbon, sulfur, and metals, appears to have been important since the dawn of life on Earth. In the Archean, anaerobic bacteria thrived before the Proterozoic oxidation of the atmosphere and the oceans, and these organisms continue to prosper in niches removed from molecular oxygen. Both aerobes and anaerobes have profound effects on the geochemistry of dissolved metals and metal-bearing minerals. Aerobes can oxidize dissolved metals and reduced Sulfur, as well as sulfur and metals in sulfide minerals can contribute to the supergene enrichment of sulfide ores, and can catalyze the formation of acid mine drainage. Heterotrophic anaerobes, which require organic carbon for their metabolism, catalvze a number of thermodynamically favorable reactions such as Fe-Mn oxyhydroxide reductive dissolution (and the release of sorbed metals to solution) and sulfate reduction. Bacterial sulfate reduction to H2S can be very rapid if reactive organic carbon is present and can lead to precipitation of metal sulfides and perhaps increase the solubility of elements such as silver, gold, and arsenic that form stable Me-H2S aqueous complexes. Similarly, the bacterial degradation of complex organic compounds such as cellulose and hemicellulose to simpler molecules, such as acetate, oxalate, and citrate, can enhance metal solubility by forming Me organic complexes and cause dissolution of silicate minerals. Bacterially induced mineralization is being used for the bioremediation of metal-contaminated environments. Through similar processes, bacteria may have been important contributors in some sedimentary ore-forming environments and could be important along the low-temperature edges of high-temperature systems such as those that form volcanogenic massive sulfides.
引用
收藏
页码:1067 / 1084
页数:18
相关论文
共 258 条
[71]   Neutrophilic iron-oxidizing bacteria in the ocean: Their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea [J].
Edwards, KJ ;
Bach, W ;
McCollom, TM ;
Rogers, DR .
GEOMICROBIOLOGY JOURNAL, 2004, 21 (06) :393-404
[72]  
Edwards KJ, 1999, APPL ENVIRON MICROB, V65, P3627
[73]  
Ehrlich HL, 2002, GEOMICROBIOLOGY
[74]   SULFUR ISOTOPE VARIABILITY IN SEDIMENT-HOSTED MASSIVE SULFIDE DEPOSITS AS DETERMINED USING THE ION MICROPROBE SHRIMP .2. A STUDY OF THE HYC DEPOSIT AT MCARTHUR RIVER, NORTHERN-TERRITORY, AUSTRALIA [J].
ELDRIDGE, CS ;
WILLIAMS, N ;
WALSHE, JL .
ECONOMIC GEOLOGY AND THE BULLETIN OF THE SOCIETY OF ECONOMIC GEOLOGISTS, 1993, 88 (01) :1-26
[75]   INVESTIGATION OF AN IRON-OXIDIZING MICROBIAL MAT COMMUNITY LOCATED NEAR AARHUS, DENMARK - FIELD STUDIES [J].
EMERSON, D ;
REVSBECH, NP .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1994, 60 (11) :4022-4031
[76]  
ENDERS MS, 2005, IN PRESS EC GEOLOGY
[77]   Microbial contributions to cave formation: New insights into sulfuric acid speleogenesis [J].
Engel, AS ;
Stern, LA ;
Bennett, PC .
GEOLOGY, 2004, 32 (05) :369-372
[78]   Bacteria were responsible for the magnitude of the world-class hydrothermal base metal sulfide orebody at Navan Ireland [J].
Fallick, AE ;
Ashton, JH ;
Boyce, AJ ;
Ellam, BM ;
Russell, MJ .
ECONOMIC GEOLOGY AND THE BULLETIN OF THE SOCIETY OF ECONOMIC GEOLOGISTS, 2001, 96 (04) :885-890
[79]  
Feely H. W., 1957, AAPG BULL, V41, P1802
[80]   A chemical equilibrium model for metal adsorption onto bacterial surfaces [J].
Fein, JB ;
Daughney, CJ ;
Yee, N ;
Davis, TA .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1997, 61 (16) :3319-3328