Membrane-based ethylene/ethane separation: The upper bound and beyond

被引:157
作者
Rungta, Meha [1 ]
Zhang, Chen [1 ]
Koros, William J. [1 ]
Xu, Liren [2 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[2] Dow Chem Co USA, Freeport, TX 77541 USA
关键词
ethylene; ethane; polymeric upper bound; facilitated transport; zeolite; metal organic framework; carbon molecular sieve; pyrolysis; METAL-ORGANIC FRAMEWORK; ZEOLITIC IMIDAZOLATE FRAMEWORKS; HOLLOW-FIBER MEMBRANES; GAS-SEPARATION; OLEFIN/PARAFFIN SEPARATION; HYDROCARBON SEPARATIONS; TEMPERATURE-DEPENDENCE; FACILITATED TRANSPORT; SILVER-NITRATE; CARBON;
D O I
10.1002/aic.14105
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Ethylene/ethane separation via cryogenic distillation is extremely energy-intensive, and membrane separation may provide an attractive alternative. In this paper, ethylene/ethane separation performance using polymeric membranes is summarized, and an experimental ethylene/ethane polymeric upper bound based on literature data is presented. A theoretical prediction of the ethylene/ethane upper bound is also presented, and shows good agreement with the experimental upper bound. Further, two ways to overcome the ethylene/ethane upper bound, based on increasing the sorption or diffusion selectivity, is also discussed, and a review on advanced membrane types such as facilitated transport membranes, zeolite and metal organic framework based membranes, and carbon molecular sieve membranes is presented. Of these, carbon membranes have shown the potential to surpass the polymeric ethylene/ethane upper bound performance. Furthermore, a convenient, potentially scalable method for tailoring the performance of carbon membranes for ethylene/ethane separation based on tuning the pyrolysis conditions has also been demonstrated. (c) 2013 American Institute of Chemical Engineers AIChE J, 59: 3475-3489, 2013
引用
收藏
页码:3475 / 3489
页数:15
相关论文
共 101 条
[1]   SAPO-34 assisted C3 separation: Modeling and simulation [J].
Agarwal, K. ;
John, M. ;
Pai, S. ;
Newalkar, B. L. ;
Bhargava, R. ;
Choudary, N. V. .
MICROPOROUS AND MESOPOROUS MATERIALS, 2010, 132 (03) :311-318
[2]  
[Anonymous], 2007, SEPARATION OLEFIN PA
[3]   A review on olefin/paraffin separation using reversible chemical complexation technology [J].
Azhin, Maryam ;
Kaghazchi, Tahereh ;
Rahmani, Mohammad .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2008, 14 (05) :622-638
[4]   A High-Performance Gas-Separation Membrane Containing Submicrometer-Sized Metal-Organic Framework Crystals [J].
Bae, Tae-Hyun ;
Lee, Jong Suk ;
Qiu, Wulin ;
Koros, William J. ;
Jones, Christopher W. ;
Nair, Sankar .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (51) :9863-9866
[5]   Future directions of membrane gas separation technology [J].
Baker, RW .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (06) :1393-1411
[6]   Activated diffusion in membranes. [J].
Barrer, RM .
TRANSACTIONS OF THE FARADAY SOCIETY, 1939, 35 (01) :0644-0655
[7]   TRANSPORT AND EQUILIBRIUM PHENOMENA IN GAS ELASTOMER SYSTEMS .1. KINETIC PHENOMENA [J].
BARRER, RM ;
SKIRROW, G .
JOURNAL OF POLYMER SCIENCE, 1948, 3 (04) :549-563
[8]   Carbon molecular sieve membranes prepared from porous fiber precursor [J].
Barsema, JN ;
van der Vegt, NFA ;
Koops, GH ;
Wessling, M .
JOURNAL OF MEMBRANE SCIENCE, 2002, 205 (1-2) :239-246
[9]   HIGH-EFFICIENCY SEPARATION OF AN ETHYLENE ETHANE MIXTURE BY A LARGE-SCALE LIQUID-MEMBRANE CONTACTOR CONTAINING FLAT-SHEET NONPOROUS POLYMERIC GAS-SEPARATION MEMBRANES AND A SELECTIVE FLOWING-LIQUID ABSORBENT [J].
BESSARABOV, DG ;
SANDERSON, RD ;
JACOBS, EP ;
BECKMAN, IN .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1995, 34 (05) :1769-1778
[10]   Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites [J].
Bloch, Eric D. ;
Queen, Wendy L. ;
Krishna, Rajamani ;
Zadrozny, Joseph M. ;
Brown, Craig M. ;
Long, Jeffrey R. .
SCIENCE, 2012, 335 (6076) :1606-1610