Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia

被引:304
作者
Vonk, J. E. [1 ,2 ]
Sanchez-Garcia, L. [1 ,2 ]
van Dongen, B. E. [1 ,2 ]
Alling, V. [1 ,2 ]
Kosmach, D. [3 ]
Charkin, A. [3 ]
Semiletov, I. P. [3 ,4 ]
Dudarev, O. V. [3 ]
Shakhova, N. [3 ,4 ]
Roos, P. [5 ]
Eglinton, T. I. [6 ]
Andersson, A. [1 ,2 ]
Gustafsson, O. [1 ,2 ]
机构
[1] Stockholm Univ, Dept Appl Environm Sci ITM, SE-11418 Stockholm, Sweden
[2] Stockholm Univ, Bert Bolin Ctr Climate Res, SE-11418 Stockholm, Sweden
[3] Russian Acad Sci, Pacific Oceanol Inst, Vladivostok 690041, Russia
[4] Univ Alaska, Int Arctic Res Ctr, Fairbanks, AK 99775 USA
[5] Riso Natl Lab Sustainable Energy, DK-4000 Roskilde, Denmark
[6] Swiss Fed Inst Technol, Inst Geol, CH-8092 Zurich, Switzerland
基金
美国国家科学基金会; 美国海洋和大气管理局; 瑞典研究理事会;
关键词
OFFSHORE PERMAFROST; SHELF; DEGRADATION; RELEASE; MATTER; LAPTEV; CYCLE;
D O I
10.1038/nature11392
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The future trajectory of greenhouse gas concentrations depends on interactions between climate and the biogeosphere(1,2). Thawing of Arctic permafrost could release significant amounts of carbon into the atmosphere in this century(3). Ancient Ice Complex deposits outcropping along the similar to 7,000-kilometre-long coastline of the East Siberian Arctic Shelf (ESAS)(4,5), and associated shallow subsea permafrost(6,7), are two large pools of permafrost carbon(8), yet their vulnerabilities towards thawing and decomposition are largely unknown(9-11). Recent Arctic warming is stronger than has been predicted by several degrees, and is particularly pronounced over the coastal ESAS region(12,13). There is thus a pressing need to improve our understanding of the links between permafrost carbon and climate in this relatively inaccessible region. Here we show that extensive release of carbon from these Ice Complex deposits dominates (57 +/- 2 per cent) the sedimentary carbon budget of the ESAS, the world's largest continental shelf, overwhelming the marine and topsoil terrestrial components. Inverse modelling of the dual-carbon isotope composition of organic carbon accumulating in ESAS surface sediments, using Monte Carlo simulations to account for uncertainties, suggests that 44 +/- 10 teragrams of old carbon is activated annually from Ice Complex permafrost, an order of magnitude more than has been suggested by previous studies(14). We estimate that about two-thirds (66 +/- 16 per cent) of this old carbon escapes to the atmosphere as carbon dioxide, with the remainder being re-buried in shelf sediments. Thermal collapse and erosion of these carbon-rich Pleistocene coastline and seafloor deposits may accelerate with Arctic amplification of climate warming(2,13).
引用
收藏
页码:137 / 140
页数:4
相关论文
共 30 条
[1]  
[Anonymous], 2008, THESIS YAKUTSK MELNI
[2]   Recent changes in shelf hydrography in the Siberian Arctic: Potential for subsea permafrost instability [J].
Dmitrenko, Igor A. ;
Kirillov, Sergey A. ;
Tremblay, L. Bruno ;
Kassens, Heidemarie ;
Anisimov, Oleg A. ;
Lavrov, Sergey A. ;
Razumov, Sergey O. ;
Grigoriev, Mikhail N. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2011, 116
[3]   Deposition settings on the continental shelf of the East Siberian Sea [J].
Dudarev, O. V. ;
Semiletov, I. P. ;
Charkin, A. N. ;
Botsul, A. I. .
DOKLADY EARTH SCIENCES, 2006, 409 (06) :1000-1005
[4]   Potential carbon release from permafrost soils of Northeastern Siberia [J].
Dutta, Koushik ;
Schuur, E. A. G. ;
Neff, J. C. ;
Zimov, S. A. .
GLOBAL CHANGE BIOLOGY, 2006, 12 (12) :2336-2351
[5]   Climate-carbon cycle feedback analysis:: Results from the C4MIP model intercomparison [J].
Friedlingstein, P. ;
Cox, P. ;
Betts, R. ;
Bopp, L. ;
Von Bloh, W. ;
Brovkin, V. ;
Cadule, P. ;
Doney, S. ;
Eby, M. ;
Fung, I. ;
Bala, G. ;
John, J. ;
Jones, C. ;
Joos, F. ;
Kato, T. ;
Kawamiya, M. ;
Knorr, W. ;
Lindsay, K. ;
Matthews, H. D. ;
Raddatz, T. ;
Rayner, P. ;
Reick, C. ;
Roeckner, E. ;
Schnitzler, K. -G. ;
Schnur, R. ;
Strassmann, K. ;
Weaver, A. J. ;
Yoshikawa, C. ;
Zeng, N. .
JOURNAL OF CLIMATE, 2006, 19 (14) :3337-3353
[6]  
Gruber N, 2004, SCOPE SER, V62, P45
[7]   What is the oxygen exposure time of laterally transported organic matter along the Washington margin? [J].
Keil, RG ;
Dickens, AF ;
Arnarson, T ;
Nunn, BL ;
Devol, AH .
MARINE CHEMISTRY, 2004, 92 (1-4) :157-165
[8]   Towards a calculation of organic carbon release from erosion of Arctic coasts using non-fractal coastline datasets [J].
Lantuit, H. ;
Rachold, V. ;
Pollard, W. H. ;
Steenhuisen, F. ;
Odegard, R. ;
Hubberten, H. -W. .
MARINE GEOLOGY, 2009, 257 (1-4) :1-10
[9]   Large tundra methane burst during onset of freezing [J].
Mastepanov, Mikhail ;
Sigsgaard, Charlotte ;
Dlugokencky, Edward J. ;
Houweling, Sander ;
Strom, Lena ;
Tamstorf, Mikkel P. ;
Christensen, Torben R. .
NATURE, 2008, 456 (7222) :628-U58
[10]   Modeling sub-sea permafrost in the East Siberian Arctic Shelf: the Dmitry Laptev Strait [J].
Nicolsky, D. ;
Shakhova, N. .
ENVIRONMENTAL RESEARCH LETTERS, 2010, 5 (01)