Vacancy-induced magnetism in graphene and graphene ribbons

被引:408
作者
Palacios, J. J. [1 ]
Fernandez-Rossier, J. [1 ]
Brey, L. [2 ]
机构
[1] Univ Alicante, Dept Fis Aplicada, E-03690 Alicante, Spain
[2] CSIC, Inst Ciencia Mat Madrid, E-28049 Canto Blanco, Spain
关键词
D O I
10.1103/PhysRevB.77.195428
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We address the electronic structure and magnetic properties of vacancies and voids both in graphene and graphene ribbons. By using a mean-field Hubbard model, we study the appearance of magnetic textures associated with removing a single atom (vacancy) and multiple adjacent atoms (voids) as well as the magnetic interactions between them. A simple set of rules, based on the Lieb theorem, link the atomic structure and the spatial arrangement of the defects to the emerging magnetic order. The total spin S of a given defect depends on its sublattice imbalance, but some defects with S=0 can still have local magnetic moments. The sublattice imbalance also determines whether the defects interact ferromagnetically or antiferromagnetically with one another and the range of these magnetic interactions is studied in some simple cases. We find that in semiconducting armchair ribbons and two-dimensional graphene without global sublattice imbalance, there is a maximum defect density above which local magnetization disappears. Interestingly, the electronic properties of semiconducting graphene ribbons with uncoupled local moments are very similar to those of diluted magnetic semiconductors, presenting giant Zeeman splitting.
引用
收藏
页数:14
相关论文
共 62 条
[1]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[2]   Light and electric field control of ferromagnetism in magnetic quantum structures [J].
Boukari, H ;
Kossacki, P ;
Bertolini, M ;
Ferrand, D ;
Cibert, J ;
Tatarenko, S ;
Wasiela, A ;
Gaj, JA ;
Dietl, T .
PHYSICAL REVIEW LETTERS, 2002, 88 (20) :4-207204
[3]   Electronic states of graphene nanoribbons studied with the Dirac equation [J].
Brey, L ;
Fertig, HA .
PHYSICAL REVIEW B, 2006, 73 (23)
[4]   Diluted graphene antiferromagnet [J].
Brey, L. ;
Fertig, H. A. ;
Das Sarma, S. .
PHYSICAL REVIEW LETTERS, 2007, 99 (11)
[5]   Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots [J].
Bunch, JS ;
Yaish, Y ;
Brink, M ;
Bolotin, K ;
McEuen, PL .
NANO LETTERS, 2005, 5 (02) :287-290
[6]   Magnetic state around cation vacancies in II-VI semiconductors [J].
Chanier, T. ;
Opahle, I. ;
Sargolzaei, M. ;
Hayn, R. ;
Lannoo, M. .
PHYSICAL REVIEW LETTERS, 2008, 100 (02)
[7]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[8]   d0 ferromagnetism [J].
Coey, JMD .
SOLID STATE SCIENCES, 2005, 7 (06) :660-667
[9]   Permanent magnetism, magnetic anisotropy, and hysteresis of thiol-capped gold nanoparticles -: art. no. 087204 [J].
Crespo, P ;
Litrán, R ;
Rojas, TC ;
Multigner, M ;
de la Fuente, JM ;
Sánchez-López, JC ;
García, MA ;
Hernando, A ;
Penadés, S ;
Fernández, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (08) :087204-1
[10]   Peculiar width dependence of the electronic properties of carbon nanoribbons [J].
Ezawa, M .
PHYSICAL REVIEW B, 2006, 73 (04)