From brain determination to testis determination: evolution of the mammalian sex-determining gene

被引:24
作者
Graves, JAM [1 ]
机构
[1] Australian Natl Univ, Res Sch Biol Sci, Canberra, ACT 2601, Australia
关键词
D O I
10.1071/RD01093
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In mammals, sex is determined by an XY male:XX female sex chromosome system in which a male-dominant gene on the Y chromosome (SRY) determines testis formation. Sex chromosomes evolved from an ordinary autosome pair as the Y chromosome was progressively degraded. The Y chromosome has lost nearly all of its 1500 original genes, and those that survived did so because they evolved a critical role in male determination or differentiation. SRY is typical of Y-borne genes. Comparative gene mapping and sequencing shows that SRY arose quite recently as a degraded version of the SOX3 gene on the X chromosome. SOX3 is expressed predominantly in brain, and so is more likely to be a brain-determining than a testis-determining gene. The male-dominant action of SRY may be an illusion, as its structure suggests that it works by interfering with the action of a related gene, which in turn inhibits testis development. This hypothesis can give a good account of how a brain-determining gene acquired a role in testis determination via differential dosage of SOX3. SRY has no central role in sex determination and it can be replaced as a trigger and loft, as have many other Y-borne genes in recent evolutionary history The absence of SRY in two species of the mole vole (Ellobius) suggests that its useful life is already running out.
引用
收藏
页码:665 / 672
页数:8
相关论文
共 51 条
[51]  
YOUNG GJ, 1982, CARNIVOROUS MARSUPIA, V2, P783