In vitro polyester synthesis via enzymatic polymerization

被引:33
作者
Kobayashi, S [1 ]
Uyama, H [1 ]
机构
[1] Kyoto Univ, Grad Sch Engn, Dept Chem Mat, Kyoto 6068501, Japan
关键词
D O I
10.2174/1385272023374544
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
Recent topics on in vitro synthesis of polyesters by mainly lipase catalysis are reviewed. Lipase, an enzyme catalyzing an ester bond-cleavage reaction by water in living cells, induces the reverse reaction of hydrolysis, leading to polymer production by a bond-forming reaction. Polyester synthesis has been achieved from various monomer combinations, typically oxyacids or their esters, dicarboxylic acids or their derivatives/glycols, and lactones under mild reaction conditions. Lipase catalyzes ring-opening polymerization of lactones and their enzymatic polymerizability is quite specific in comparison with that by conventional chemical catalysts. Enzymatic synthesis of end-functional polyesters by facile procedures has been developed. By utilizing characteristic catalytic function of lipases, regio- and enantioselective polymerizations proceed to give functional polymers, many of which are difficult to be synthesized by conventional methodologies.
引用
收藏
页码:209 / 222
页数:14
相关论文
共 95 条
[1]   Novel functional polycarbonate by lipase-catalyzed ring-opening polymerization of 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one [J].
Al-Azemi, TF ;
Bisht, KS .
MACROMOLECULES, 1999, 32 (20) :6536-6540
[2]   ENZYMATIC POLYMERIZATION OF AN UNACTIVATED DIOL DIACID SYSTEM [J].
BINNS, F ;
ROBERTS, SM ;
TAYLOR, A ;
WILLIAMS, CF .
JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 1, 1993, (08) :899-904
[3]  
Binns F, 1998, J POLYM SCI POL CHEM, V36, P2069, DOI 10.1002/(SICI)1099-0518(19980915)36:12<2069::AID-POLA13>3.3.CO
[4]  
2-Q
[5]   Lipase-catalyzed ring-opening polymerization of trimethylene carbonate [J].
Bisht, KS ;
Svirkin, YY ;
Henderson, LA ;
Gross, RA ;
Kaplan, DL ;
Swift, G .
MACROMOLECULES, 1997, 30 (25) :7735-7742
[6]   Ethyl glucoside as a multifunctional initiator for enzyme-catalyzed regioselective lactone ring-opening polymerization [J].
Bisht, KS ;
Deng, F ;
Gross, RA ;
Kaplan, DL ;
Swift, G .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (07) :1363-1367
[7]   Enzyme-catalyzed ring-opening polymerization of omega-pentadecalactone [J].
Bisht, KS ;
Henderson, LA ;
Gross, RA ;
Kaplan, DL ;
Swift, G .
MACROMOLECULES, 1997, 30 (09) :2705-2711
[8]   BIOCATALYTIC SYNTHESIS OF POLYMERS .3. FORMATION OF A HIGH-MOLECULAR-WEIGHT POLYESTER THROUGH LIMITATION OF HYDROLYSIS BY ENZYME-BOUND WATER AND THROUGH EQUILIBRIUM CONTROL [J].
BRAZWELL, EM ;
FILOS, DY ;
MORROW, CJ .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 1995, 33 (01) :89-95
[9]   Lipase-catalysed formation of macrocycles by ring-opening polymerisation of ε-caprolactone [J].
Cordova, A ;
Iversen, T ;
Martinelle, M .
POLYMER, 1998, 39 (25) :6519-6524
[10]   Synthesis of a poly(ε-caprolactone) monosubstituted first generation dendrimer by lipase catalysis [J].
Córdova, A ;
Hult, A ;
Hult, K ;
Ihre, H ;
Iversen, T ;
Malmström, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (51) :13521-13522