A Hybridized Power Panel to Simultaneously Generate Electricity from Sunlight, Raindrops, and Wind around the Clock

被引:195
作者
Zheng, Li [1 ,2 ]
Cheng, Gang [2 ,3 ]
Chen, Jun [2 ]
Lin, Long [2 ]
Wang, Jie [2 ]
Liu, Yongsheng [1 ]
Li, Hexing [1 ]
Wang, Zhong Lin [2 ,4 ]
机构
[1] Shanghai Univ Elect Power, Sch Math & Phys, Shanghai 200090, Peoples R China
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[3] Henan Univ, Key Lab Special Funct Mat, Kaifeng 475004, Peoples R China
[4] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
WATER-WAVE ENERGY; TRIBOELECTRIC NANOGENERATOR; SOLAR-ENERGY; CELL; ELECTRIFICATION; NANOWIRES;
D O I
10.1002/aenm.201501152
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the solar panels quickly spreading across the rooftops worldwide, solar power is now very popular. However, the output of the solar cell panels is highly dependent on weather conditions, making it rather unstable. Here, a hybridized power panel that can simultaneously generate power from sunlight, raindrop, and wind is proposed and demonstrated, when any or all of them are available in ambient environment. Without compromising the output performance and conversion efficiency of the solar cell itself, the presented hybrid cell can deliver an average output of 86 mW m(-2) from the water drops at a dripping rate of 13.6 mL s(-1), and an average output of 8 mW m(-2) from wind at a speed of 2.7 m s(-1), which is an innovative energy compensation to the common solar cells, especially in rainy seasons or at night. Given the compelling features, such as cost-effectiveness and a greatly expanded working time, the reported hybrid cell renders an innovative way to realize multiple kinds of energy harvesting and as an useful compensation to the currently widely used solar cells. The demonstrated concept here will possibly be adopted in a variety of circumstances and change the traditional way of solar energy harvesting.
引用
收藏
页数:8
相关论文
共 31 条
[1]   Networks of Triboelectric Nanogenerators for Harvesting Water Wave Energy: A Potential Approach toward Blue Energy [J].
Chen, Jun ;
Yang, Jin ;
Li, Zhaoling ;
Fan, Xing ;
Zi, Yunlong ;
Jing, Qingshen ;
Guo, Hengyu ;
Wen, Zhen ;
Pradel, Ken C. ;
Niu, Simiao ;
Wang, Zhong Lin .
ACS NANO, 2015, 9 (03) :3324-3331
[2]   Personalized Keystroke Dynamics for Self-Powered Human-Machine Interfacing [J].
Chen, Jun ;
Zhu, Guang ;
Yang, Jin ;
Jing, Qingshen ;
Bai, Peng ;
Yang, Weiqing ;
Qi, Xuewei ;
Su, Yuanjie ;
Wang, Zhong Lin .
ACS NANO, 2015, 9 (01) :105-116
[3]   Harmonic-Resonator-Based Triboelectric Nanogenerator as a Sustainable Power Source and a Self-Powered Active Vibration Sensor [J].
Chen, Jun ;
Zhu, Guang ;
Yang, Weiqing ;
Jing, Qingshen ;
Bai, Peng ;
Yang, Ya ;
Hou, Te-Chien ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2013, 25 (42) :6094-6099
[4]   Multilayered-Electrode-Based Triboelectric Nanogenerators with Managed Output Voltage and Multifold Enhanced Charge Transport [J].
Cheng, Gang ;
Zheng, Li ;
Lin, Zong-Hong ;
Yang, Jin ;
Du, Zuliang ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2015, 5 (05)
[5]   Increase Output Energy and Operation Frequency of a Triboelectric Nanogenerator by Two Grounded Electrodes Approach [J].
Cheng, Gang ;
Lin, Zong-Hong ;
Du, Zuliang ;
Wang, Zhong Lin .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (19) :2892-2898
[6]   Pulsed Nanogenerator with Huge Instantaneous Output Power Density [J].
Cheng, Gang ;
Lin, Zong-Hong ;
Lin, Long ;
Du, Zu-liang ;
Wang, Zhong Lin .
ACS NANO, 2013, 7 (08) :7383-7391
[7]   Spontaneous electrical charging of droplets by conventional pipetting [J].
Choi, Dongwhi ;
Lee, Horim ;
Im, Do Jin ;
Kang, In Seok ;
Lim, Geunbae ;
Kim, Dong Sung ;
Kang, Kwan Hyoung .
SCIENTIFIC REPORTS, 2013, 3
[8]   Water droplet bouncing-a definition for superhydrophobic surfaces [J].
Crick, Colin R. ;
Parkin, Ivan P. .
CHEMICAL COMMUNICATIONS, 2011, 47 (44) :12059-12061
[9]   Beyond NIMBYism: towards an integrated framework for understanding public perceptions of wind energy [J].
Devine-Wright, P .
WIND ENERGY, 2005, 8 (02) :125-139
[10]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334