Robust multivariable PID control for linear parameter varying systems

被引:73
作者
Mattei, M [1 ]
机构
[1] Univ Reggio Calabria, Dipartimento Informat Matemat Elettron & Trasport, I-89100 Reggio Di Calabria, Italy
关键词
PID control; robust control; quadratic stability; convex optimisation; parametric variation;
D O I
10.1016/S0005-1098(01)00156-X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Practical control problems often deal with uncertain systems depending on parametric and possibly time-varying uncertainties. Quadratic stability theory and recent advances in convex and nonconvex optimisation algorithms provide useful tools to cope with this kind of problems. On the other hand, PID is still the controller most commonly used for industrial problems. In this paper, we consider a certain class of Multi input-multi output linear parameter varying systems which are encountered in practical control problems and we propose a state space parameterisation which allows to convert PI and PID controller synthesis into an LMI or BMI optimisation problem. The proposed technique guarantees uniform exponential stability of the closed loop system, a desired rate of convergence, and an H(infinity) norm bound. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1997 / 2003
页数:7
相关论文
共 14 条
[1]  
Ackermann J., 1993, Robust Control: Systems with Uncertain Physical Parameters
[2]   Robust and quadratic stability via polytopic set covering [J].
Amato, F ;
Garofalo, F ;
Glielmo, L ;
Pironti, A .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1995, 5 (08) :745-756
[3]  
Astrom K., 1995, PID CONTROL THEORY D
[4]   A SURVEY OF EXTREME POINT RESULTS FOR ROBUSTNESS OF CONTROL-SYSTEMS [J].
BARMISH, BR ;
KANG, HI .
AUTOMATICA, 1993, 29 (01) :13-35
[5]   STABILIZATION OF UNCERTAIN SYSTEMS VIA LINEAR-CONTROL [J].
BARMISH, BR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1983, 28 (08) :848-850
[6]  
BARMISH BR, 1992, IEEE T AUTOMATIC CON, V37, P13
[7]   ROBUST PERFORMANCE OF LINEAR PARAMETRICALLY VARYING SYSTEMS USING PARAMETRICALLY-DEPENDENT LINEAR FEEDBACK [J].
BECKER, G ;
PACKARD, A .
SYSTEMS & CONTROL LETTERS, 1994, 23 (03) :205-215
[8]  
BERAN E, 1997, P EUR CONTR C BRUX
[9]  
Boyd S., 1994, LINEAR MATRIX INEQUA, DOI https://doi.org/10.1109/jproc.1998.735454
[10]  
ELGHAOUI L, 1994, IEEE DECIS CONTR P, P2678, DOI 10.1109/CDC.1994.411398