A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors

被引:85
作者
Tartakovsky, B [1 ]
Guiot, SR [1 ]
机构
[1] Natl Res Council Canada, Biotechnol Res Inst, Montreal, PQ H4P 2R2, Canada
关键词
D O I
10.1021/bp050225j
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In this study, a two-compartment continuous flow microbial fuel cell (MFC) reactor was used to compare the efficiencies of cathode oxygenation by air and by hydrogen peroxide. The MFC reactor had neither a proton-selective membrane nor an electron transfer mediator. At startup, the cathodic compartment was continuously aerated and the anodic compartment was fed with a glucose solution. An increase of electrical power generation from 0.008 to 7.2 mW m(-1) of anode surface with a steady-state potential of 215-225 mV was observed within a period of 12 days. The performance of the air-oxygenated MFC reactor progressively declined over time because of biofilm proliferation in the cathodic compartment. Oxygenation of the cathodic compartment using 300 mL d(-1) of 0.3% hydrogen peroxide solution resulted in a power density of up to 22 MW m(-2) (68.2 mA m(-2)) of anode surface at a potential of 340-350 mV. The use of H2O2 for oxygenation was found to improve the long-term stability of the MFC reactor.
引用
收藏
页码:241 / 246
页数:6
相关论文
共 21 条
[1]   MICROBIAL FUEL-CELLS - ELECTRICITY PRODUCTION FROM CARBOHYDRATES [J].
ALLEN, RM ;
BENNETTO, HP .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 1993, 39 :27-40
[2]   Electricity production by Geobacter sulfurreducens attached to electrodes [J].
Bond, DR ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (03) :1548-1555
[3]  
Casey E, 1999, BIOTECHNOL BIOENG, V62, P183, DOI 10.1002/(SICI)1097-0290(19990120)62:2<183::AID-BIT8>3.0.CO
[4]  
2-L
[5]   Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells [J].
Chaudhuri, SK ;
Lovley, DR .
NATURE BIOTECHNOLOGY, 2003, 21 (10) :1229-1232
[6]   Operational parameters affecting the performance of a mediator-less microbial fuel cell [J].
Gil, GC ;
Chang, IS ;
Kim, BH ;
Kim, M ;
Jang, JK ;
Park, HS ;
Kim, HJ .
BIOSENSORS & BIOELECTRONICS, 2003, 18 (04) :327-334
[7]   Simple prediction of oxygen penetration depth in biofilms for wastewater treatment [J].
Hibiya, K ;
Nagai, J ;
Tsuneda, S ;
Hirata, A .
BIOCHEMICAL ENGINEERING JOURNAL, 2004, 19 (01) :61-68
[8]   HYDROGEN-PEROXIDE AS A SUPPLEMENTAL OXYGEN SOURCE FOR ACTIVATED-SLUDGE - MICROBIOLOGICAL INVESTIGATIONS [J].
HOUTMEYERS, J ;
POFFE, R ;
VERACHTERT, H .
EUROPEAN JOURNAL OF APPLIED MICROBIOLOGY, 1977, 4 (04) :295-305
[9]   Construction and operation of a novel mediator- and membrane-less microbial fuel cell [J].
Jang, JK ;
Pham, TH ;
Chang, IS ;
Kang, KH ;
Moon, H ;
Cho, KS ;
Kim, BH .
PROCESS BIOCHEMISTRY, 2004, 39 (08) :1007-1012
[10]   A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciense [J].
Kim, HJ ;
Park, HS ;
Hyun, MS ;
Chang, IS ;
Kim, M ;
Kim, BH .
ENZYME AND MICROBIAL TECHNOLOGY, 2002, 30 (02) :145-152