Synthesis and characterization of hard magnetic composite photocatalyst - Barium ferrite/silica/titania

被引:64
作者
Lee, SW [1 ]
Drwiega, J
Mazyck, D
Wu, CY
Sigmund, WM
机构
[1] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Environm Engn Sci, Gainesville, FL 32611 USA
关键词
composite materials; coatings; precipitation; electron microscopy;
D O I
10.1016/j.matchemphys.2005.07.039
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hard magnetic composite photocatalytic particles-barium ferrite (magnetic core)/silica (intermediate layer)/titania (photoactive shell) (B/S/T) were prepared by wet-chemical methods. Anatase titania nanoparticles were directly coated on the silica-coated barium ferrite forming photoactive titania shell by hydrolysis and condensation of titanium n-butoxide. The prepared hard magnetic composite photocatalyst can be magnetically fluidized and recovered by an applied magnetic field enhancing both the separation and mixing efficiency for remediating fluids. The prepared composite particles were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), BET specific surface area measurement and inductively coupled plasma (ICP) spectroscopy. The photocatalytic activity of the synthesized composite particles was tested by photodegradation of Procion red MX-5B dye under UV illumination (302 nm) and compared with that of titania nanoparticles. The as-prepared composite particles were photoactive, with enhanced photocatalytic activity after the heat-treatment at 500 degrees C for 1 h. The reusability of the composite photocatalytic particles was also tested and the recycled composite particles presented the photocatalytic activity comparable to the fresh composite particles. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:483 / 488
页数:6
相关论文
共 22 条
[1]   Utilization of TiO2 photocatalysts in green chemistry [J].
Anpo, M .
PURE AND APPLIED CHEMISTRY, 2000, 72 (07) :1265-1270
[2]   Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide [J].
Beydoun, D ;
Amal, R ;
Low, G ;
McEvoy, S .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2002, 180 (1-2) :193-200
[3]   Implications of heat treatment on the properties of a magnetic iron oxide-titanium dioxide photocatalyst [J].
Beydoun, D ;
Amal, R .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2002, 94 (01) :71-81
[4]   Novel photocatalyst: Titania-coated magnetite. Activity and photodissolution [J].
Beydoun, D ;
Amal, R ;
Low, GKC ;
McEvoy, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (18) :4387-4396
[5]   Photocatalytic degradation for environmental applications - a review [J].
Bhatkhande, DS ;
Pangarkar, VG ;
Beenackers, AACM .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2002, 77 (01) :102-116
[6]   CHARACTERIZATION OF IRON TITANIUM-OXIDE PHOTOCATALYSTS .2. SURFACE STUDIES [J].
BICKLEY, RI ;
GONZALEZCARRENO, T ;
GONZALEZELIPE, AR ;
MUNUERA, G ;
PALMISANO, L .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1994, 90 (15) :2257-2264
[7]   Photocatalytic oxidation of chlorinated hydrocarbons in water [J].
Crittenden, JC ;
Liu, JB ;
Hand, DW ;
Perram, DL .
WATER RESEARCH, 1997, 31 (03) :429-438
[8]   Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification [J].
Fernandez, A ;
Lassaletta, G ;
Jimenez, VM ;
Justo, A ;
GonzalezElipe, AR ;
Herrmann, JM ;
Tahiri, H ;
AitIchou, Y .
APPLIED CATALYSIS B-ENVIRONMENTAL, 1995, 7 (1-2) :49-63
[9]  
Fujishima A., 2000, J PHOTOCH PHOTOBIO C, V1, P1, DOI DOI 10.1016/S1389-5567(00)00002-2
[10]   Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties [J].
Gao, Y ;
Chen, BH ;
Li, HL ;
Ma, YX .
MATERIALS CHEMISTRY AND PHYSICS, 2003, 80 (01) :348-355