Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations

被引:374
作者
Gaultois, Michael W. [1 ,2 ]
Sparks, Taylor D. [2 ]
Borg, Christopher K. H. [2 ]
Seshadri, Ram [1 ,2 ,3 ]
Bonificio, William D. [4 ]
Clarke, David R. [4 ]
机构
[1] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
[4] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
thermoelectrics; datamining; Herfindahl-Hirschman Index; elemental abundance; LOW-THERMAL-CONDUCTIVITY; HIGH-TEMPERATURE; SUBSTITUTED CAMNO3; OXIDE MATERIAL; BI; FIGURE; THERMOPOWER; TRANSPORT; COEFFICIENT; ENHANCEMENT;
D O I
10.1021/cm400893e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this review, we describe the creation of a large database of thermoelectric materials prepared by abstracting information from over 100 publications. The database has over 18 000 data points from multiple classes of compounds, whose relevant properties have been measured at several temperatures. Appropriate visualization of the data immediately allows certain insights to be gained with regard to the property space of plausible thermoelectric materials. Of particular note is that any candidate material needs to display an electrical resistivity value that is close to 1 m Omega cm at 300 K, that is, samples should be significantly more conductive than the Mott minimum metallic conductivity. The Herfindahl-Hirschman index, a commonly accepted measure of market concentration, has been calculated from geological data (known elemental reserves) and geopolitical data (elemental production) for much of the periodic table. The visualization strategy employed here allows rapid sorting of thermoelectric compositions with respect to important issues of elemental scarcity and supply risk.
引用
收藏
页码:2911 / 2920
页数:10
相关论文
共 130 条
  • [1] Non-wetting crystal growth of Mg2Si by vertical Bridgman method and thermoelectric characteristics
    Akasaka, Masayasu
    Iida, Tsutomu
    Nemoto, Takashi
    Soga, Junichi
    Sato, Junichi
    Makino, Kenichiro
    Fukano, Masataka
    Takanashi, Yoshifumi
    [J]. JOURNAL OF CRYSTAL GROWTH, 2007, 304 (01) : 196 - 201
  • [2] Thermoelectric properties of Ba8GaxGe46-x clathrate compounds
    Anno, H
    Hokazono, M
    Kawamura, M
    Nagao, J
    Matsubara, K
    [J]. XXI INTERNATIONAL CONFERENCE ON THERMOELECTRICS, PROCEEDINGS ICT '02, 2002, : 77 - 80
  • [3] [Anonymous], 1980, NATL POWER STRUCTURE
  • [4] [Anonymous], 2009, INTRO THERMOELECTRIC
  • [5] [Anonymous], 2012, FACT SHEET RARE EART, V37
  • [6] [Anonymous], 2010, HOR MERG GUID
  • [7] Semiconducting Properties of Oxidized and Reduced Polycrystalline TiO2• Jonker Analysis
    Bak, Tadeusz
    Nowotny, Janusz
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (19) : 9746 - 9752
  • [8] In2O3:Ge, a promising n-type thermoelectric oxide composite
    Berardan, David
    Guilmeau, Emmanuel
    Maignan, Antoine
    Raveau, Bernard
    [J]. SOLID STATE COMMUNICATIONS, 2008, 146 (1-2) : 97 - 101
  • [9] High-performance bulk thermoelectrics with all-scale hierarchical architectures
    Biswas, Kanishka
    He, Jiaqing
    Blum, Ivan D.
    Wu, Chun-I
    Hogan, Timothy P.
    Seidman, David N.
    Dravid, Vinayak P.
    Kanatzidis, Mercouri G.
    [J]. NATURE, 2012, 489 (7416) : 414 - 418
  • [10] Thermoelectric and structural properties of high-performance In-based skutterudites for high-temperature energy recovery
    Biswas, Krishnendu
    Good, Morris S.
    Roberts, Kamandi C.
    Subramanian, M. A.
    Hendricks, Terry J.
    [J]. JOURNAL OF MATERIALS RESEARCH, 2011, 26 (15) : 1827 - 1835