Synthesis, characterization and enhanced thermoelectric performance of structurally ordered cable-like novel polyaniline-bismuth telluride nanocomposite

被引:90
作者
Chatterjee, Krishanu [1 ]
Mitra, Mousumi [1 ]
Kargupta, Kajari [2 ]
Ganguly, Saibal [3 ]
Banerjee, Dipali [1 ]
机构
[1] Bengal Engn & Sci Univ, Dept Phys, Howrah 711103, W Bengal, India
[2] Jadavpur Univ, Dept Chem Engn, Kolkata 700032, W Bengal, India
[3] Univ Teknol Petronas, Dept Chem Engn, Perak Darul Ridzuan 31750, Tronoh, Malaysia
关键词
ELECTRICAL-CONDUCTIVITY; THERMAL-CONDUCTIVITY; COMPOSITE; FILMS; POWER;
D O I
10.1088/0957-4484/24/21/215703
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Bismuth telluride (Bi2Te3) nanorods and polyaniline (PANI) nanoparticles have been synthesized by employing solvothermal and chemical oxidative processes, respectively. Nanocomposites, comprising structurally ordered PANI preferentially grown along the surface of a Bi2Te3 nanorods template, are synthesized using in situ polymerization. X-ray powder diffraction, UV-vis and Raman spectral analysis confirm the highly ordered chain structure of PANI on Bi2Te3 nanorods, leading to a higher extent of doping, higher chain mobility and enhancement of the thermoelectric performance. Above 380 K, the PANI-Bi2Te3 nanocomposite with a core-shell/cable-like structure exhibits a higher thermoelectric power factor than either pure PANI or Bi2Te3. At room temperature the thermal conductivity of the composite is lower than that of its pure constituents, due to selective phonon scattering by the nanointerfaces designed in the PANI-Bi2Te3 nanocable structures. The figure of merit of the nanocomposite at room temperature is comparable to the values reported in the literature for bulk polymer-based composite thermoelectric materials.
引用
收藏
页数:10
相关论文
共 57 条
[41]   Enhanced thermoelectric properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains [J].
Wang, Qun ;
Yao, Qin ;
Chang, Jiang ;
Chen, Lidong .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (34) :17612-17618
[42]   One-pot fabrication and thermoelectric properties of Ag2Te-polyaniline core-shell nanostructures [J].
Wang, Y. Y. ;
Cai, K. F. ;
Yin, J. L. ;
Du, Y. ;
Yao, X. .
MATERIALS CHEMISTRY AND PHYSICS, 2012, 133 (2-3) :808-812
[43]   Preparation of conductive polyaniline/nanosilica particle composites through ultrasonic irradiation [J].
Xia, HS ;
Wang, Q .
JOURNAL OF APPLIED POLYMER SCIENCE, 2003, 87 (11) :1811-1817
[44]   Templated growth of polyaniline on exfoliated graphene nanoplatelets (GNP) and its thermoelectric properties [J].
Xiang, Jinglei ;
Drzal, Lawrence T. .
POLYMER, 2012, 53 (19) :4202-4210
[45]   Template synthesis of heterostructured polyaniline/Bi2Te3 nanowires [J].
Xu, XC ;
Chen, LD ;
Wang, CF ;
Yao, Q ;
Feng, CD .
JOURNAL OF SOLID STATE CHEMISTRY, 2005, 178 (06) :2163-2166
[46]   Electronic and thermoelectric properties of polyaniline organic semiconductor and electrical characterization of Al/PANI MIS diode [J].
Yakuphanoglu, F. ;
Senkal, B. F. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (04) :1840-1846
[47]   Electrical conductivity, thermoelectric power, and optical properties of organo-soluble polyaniline organic semiconductor [J].
Yakuphanoglu, Fahrettin ;
Senkal, Bahire Filiz ;
Sarac, Ayfer .
JOURNAL OF ELECTRONIC MATERIALS, 2008, 37 (06) :930-934
[48]   Thermoelectric properties of alternatively layered films of polyaniline and (±)-10-camphorsulfonic acid-doped polyaniline [J].
Yan, H ;
Toshima, N .
CHEMISTRY LETTERS, 1999, (11) :1217-1218
[49]   Thermal transporting properties of electrically conductive polyaniline films as organic thermoelectric materials [J].
Yan, H ;
Sada, N ;
Toshima, N .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2002, 69 (03) :881-887
[50]  
Yan H, 2001, MACROMOL MATER ENG, V286, P139, DOI 10.1002/1439-2054(20010301)286:3<139::AID-MAME139>3.3.CO