Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode

被引:224
作者
Dubourdieu, Catherine [1 ]
Bruley, John [1 ]
Arruda, Thomas M. [2 ]
Posadas, Agham [3 ]
Jordan-Sweet, Jean [1 ]
Frank, Martin M. [1 ]
Cartier, Eduard [1 ]
Frank, David J. [1 ]
Kalinin, Sergei V. [2 ]
Demkov, Alexander A. [3 ]
Narayanan, Vijay [1 ]
机构
[1] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[3] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
DEPOLARIZATION FIELD; NEGATIVE CAPACITANCE; CRYSTALLINE OXIDES; STABILITY; GROWTH; SCALE;
D O I
10.1038/nnano.2013.192
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Epitaxial growth of SrTiO3 on silicon by molecular beam epitaxy has opened up the route to the integration of functional complex oxides on a silicon platform. Chief among them is ferroelectric functionality using perovskite oxides such as BaTiO3. However, it has remained a challenge to achieve ferroelectricity in epitaxial BaTiO3 films with a polarization pointing perpendicular to the silicon substrate without a conducting bottom electrode. Here, we demonstrate ferroelectricity in such stacks. Synchrotron X-ray diffraction and high-resolution scanning transmission electron microscopy reveal the presence of crystalline domains with the long axis of the tetragonal structure oriented perpendicular to the substrate. Using piezoforce microscopy, polar domains can be written and read and are reversibly switched with a phase change of 180 degrees. Open, saturated hysteresis loops are recorded. Thus, ferroelectric switching of 8- to 40-nm-thick BaTiO3 films in metal-ferroelectric-semiconductor structures is realized, and field-effect devices using this epitaxial oxide stack can be envisaged.
引用
收藏
页码:748 / 754
页数:7
相关论文
共 40 条
[1]   Polarization imprint and size effects in mesoscopic ferroelectric structures [J].
Alexe, M ;
Harnagea, C ;
Hesse, D ;
Gösele, U .
APPLIED PHYSICS LETTERS, 2001, 79 (02) :242-244
[2]   Electromechanical Imaging and Spectroscopy of Ferroelectric and Piezoelectric Materials: State of the Art and Prospects for the Future [J].
Balke, Nina ;
Bdikin, Igor ;
Kalinin, Sergei V. ;
Kholkin, Andrei L. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2009, 92 (08) :1629-1647
[3]   PHASE-TRANSITION, STABILITY, AND DEPOLARIZATION FIELD IN FERROELECTRIC THIN-FILMS [J].
BATRA, IP ;
WURFEL, P ;
SILVERMAN, BD .
PHYSICAL REVIEW B, 1973, 8 (07) :3257-3265
[4]   DEPOLARIZATION FIELD AND STABILITY CONSIDERATIONS IN THIN FERROELECTRIC FILMS [J].
BATRA, IP ;
WURFEL, P ;
SILVERMA.BD .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1973, 10 (05) :687-692
[5]   Depolarizing field and "real" hysteresis loops in nanometer-scale ferroelectric films [J].
Bratkovsky, A. M. ;
Levanyuk, A. P. .
APPLIED PHYSICS LETTERS, 2006, 89 (25)
[6]   Strain relaxation in single crystal SrTiO3 grown on Si (001) by molecular beam epitaxy [J].
Choi, Miri ;
Posadas, Agham ;
Dargis, Rytis ;
Shih, Chih-Kang ;
Demkov, Alexander A. ;
Triyoso, Dina H. ;
Theodore, N. David ;
Dubourdieu, Catherine ;
Bruley, John ;
Jordan-Sweet, Jean .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (06)
[7]   Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients [J].
Cross, LE .
JOURNAL OF MATERIALS SCIENCE, 2006, 41 (01) :53-63
[8]   Ferroelectricity in ultrathin perovskite films [J].
Fong, DD ;
Stephenson, GB ;
Streiffer, SK ;
Eastman, JA ;
Auciello, O ;
Fuoss, PH ;
Thompson, C .
SCIENCE, 2004, 304 (5677) :1650-1653
[9]   Nano-chemistry and scanning probe nanolithographies [J].
Garcia, R ;
Martinez, RV ;
Martinez, J .
CHEMICAL SOCIETY REVIEWS, 2006, 35 (01) :29-38
[10]   Giant tunnel electroresistance for non-destructive readout of ferroelectric states [J].
Garcia, V. ;
Fusil, S. ;
Bouzehouane, K. ;
Enouz-Vedrenne, S. ;
Mathur, N. D. ;
Barthelemy, A. ;
Bibes, M. .
NATURE, 2009, 460 (7251) :81-84