Vortices in Ginzburg-Landau billiards

被引:22
作者
Akkermans, E [1 ]
Mallick, K
机构
[1] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
[2] CENS, Serv Phys Theor, F-91191 Gif Sur Yvette, France
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 41期
关键词
D O I
10.1088/0305-4470/32/41/307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an analysis of the Ginzburg-Landau equations for the description of a two-dimensional superconductor in a bounded domain. Using the properties of a particular integrability point of these equations which allows vortex solutions, we obtain a closed expression for the energy of the superconductor. The role of the boundary of the system is to provide a selection mechanism for the number of vortices. A geometrical interpretation of these results is presented and they are applied to the analysis of the magnetization recently measured on small superconducting discs. Problems related to the interaction and nucleation of vortices are discussed.
引用
收藏
页码:7133 / 7143
页数:11
相关论文
共 25 条
[1]  
AKKERMANS E, 1999, INTERACTING VORTICES
[2]  
AKKERMANS E, 1999, IN PRESS P LES HOUCH
[3]   CONSIDERATIONS ON FLOW OF SUPERFLUID HELIUM [J].
ANDERSON, PW .
REVIEWS OF MODERN PHYSICS, 1966, 38 (02) :298-&
[4]  
[Anonymous], GINZBURG LANDAU VORT
[5]   Critical fields of mesoscopic superconductors [J].
Benoist, R ;
Zwerger, W .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1997, 103 (3-4) :377-381
[6]   On the zero set of the wave function in superconductivity [J].
Berger, J ;
Rubinstein, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 202 (03) :621-628
[7]  
Berry M. V., 1980, European Journal of Physics, V1, P154, DOI 10.1088/0143-0807/1/3/008
[8]  
BOGOMOLNYI EB, 1976, SOV J NUCL PHYS+, V24, P449
[9]   Numerical simulation of vortex arrays in thin superconducting films [J].
Bolech, C ;
Buscaglia, GC ;
Lopez, A .
PHYSICAL REVIEW B, 1995, 52 (22) :15719-15722
[10]   CLASSICAL VORTEX SOLUTION OF ABELIAN HIGGS MODEL [J].
VEGA, HJD ;
SCHAPOSNIK, FA .
PHYSICAL REVIEW D, 1976, 14 (04) :1100-1106