Vortices in Ginzburg-Landau billiards

被引:22
作者
Akkermans, E [1 ]
Mallick, K
机构
[1] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
[2] CENS, Serv Phys Theor, F-91191 Gif Sur Yvette, France
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 41期
关键词
D O I
10.1088/0305-4470/32/41/307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an analysis of the Ginzburg-Landau equations for the description of a two-dimensional superconductor in a bounded domain. Using the properties of a particular integrability point of these equations which allows vortex solutions, we obtain a closed expression for the energy of the superconductor. The role of the boundary of the system is to provide a selection mechanism for the number of vortices. A geometrical interpretation of these results is presented and they are applied to the analysis of the magnetization recently measured on small superconducting discs. Problems related to the interaction and nucleation of vortices are discussed.
引用
收藏
页码:7133 / 7143
页数:11
相关论文
共 25 条
[22]  
SAINTJAMES D, 1969, TYPE 2 SUP
[23]   Phase transitions in thin mesoscopic superconducting disks [J].
Schweigert, VA ;
Peeters, FM .
PHYSICAL REVIEW B, 1998, 57 (21) :13817-13832
[25]   SOME EXACT MULTIPSEUDO-PARTICLE SOLUTIONS OF CLASSICAL YANG-MILLS THEORY [J].
WITTEN, E .
PHYSICAL REVIEW LETTERS, 1977, 38 (03) :121-124