Role of CD36 in membrane transport of long-chain fatty acids

被引:135
作者
Ibrahimi, A [1 ]
Abumrad, NA [1 ]
机构
[1] SUNY Stony Brook, Dept Physiol & Biophys, Stony Brook, NY 11794 USA
关键词
D O I
10.1097/00075197-200203000-00004
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
CD36 is a multispecific membrane glycoprotein that has been postulated to have a variety of functions. Evidence generated in isolated cells and in mice and rat models of altered CD36 expression has indicated an important role for CD36 in membrane transport of long-chain fatty acids. The cumulative data indicate that CD36 facilitates a major fraction of fatty acid uptake by muscle and fat, and that CD36 deficiency is associated with a large (60-80%) defect in fatty acid uptake by those tissues. In humans, polymorphisms in the CD36 gene may underlie defective fatty acid metabolism and some forms of heart disease. Herein we review our current understanding of the transport function and regulation of CD36. The realization that the transport step rate limits cellular fatty acid utilization suggests that abnormalities in CD36 expression or function may impact on susceptibility to certain metabolic diseases such as obesity and insulin resistance. (C) 2002 Lippincott Williams Wllkins.
引用
收藏
页码:139 / 145
页数:7
相关论文
共 78 条
[1]   Membrane proteins implicated in long-chain fatty acid uptake by mammalian cells: CD36, FATP and FABPm [J].
Abumrad, N ;
Coburn, C ;
Ibrahimi, A .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 1999, 1441 (01) :4-13
[2]  
Abumrad N, 1998, J LIPID RES, V39, P2309
[3]  
ABUMRAD NA, 1984, J BIOL CHEM, V259, P8945
[4]  
ABUMRAD NA, 1993, J BIOL CHEM, V268, P17665
[5]  
ABUMRAD NA, 1981, J BIOL CHEM, V256, P9183
[6]   Differential effects of rexinoids and thiazolidinediones on metabolic gene expression in diabetic rodents [J].
Ahuja, HS ;
Liu, S ;
Crombie, DL ;
Boehm, M ;
Leibowitz, MD ;
Heyman, RA ;
Depre, C ;
Nagy, L ;
Tontonoz, P ;
Davies, PJA .
MOLECULAR PHARMACOLOGY, 2001, 59 (04) :765-773
[7]   Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats [J].
Aitman, TJ ;
Glazier, AM ;
Wallace, CA ;
Cooper, LD ;
Norsworthy, PJ ;
Wahid, FN ;
Al-Majali, KM ;
Trembling, PM ;
Mann, CJ ;
Shoulders, CC ;
Graf, D ;
St Lezin, E ;
Kurtz, TW ;
Kren, V ;
Pravenec, M ;
Ibrahimi, A ;
Abumrad, NA ;
Stanton, LW ;
Scott, J .
NATURE GENETICS, 1999, 21 (01) :76-83
[8]   CD36, insulin resistance, and coronary heart disease [J].
Aitman, TJ .
LANCET, 2001, 357 (9257) :651-652
[9]   Alterations of peroxisome proliferator-activated receptor δ activity affect fatty acid-controlled adipose differentiation [J].
Bastie, C ;
Luquet, S ;
Holst, D ;
Jehl-Pietri, C ;
Grimaldi, PA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (49) :38768-38773
[10]   Glucose and fatty acid metabolism in the isolated working mouse heart [J].
Belke, DD ;
Larsen, TS ;
Lopaschuk, GD ;
Severson, DL .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 1999, 277 (04) :R1210-R1217