Orai, STIM1 and iPLA2β:: a view from a different perspective

被引:63
作者
Bolotina, Victoria M. [1 ]
机构
[1] Boston Univ, Sch Med, Dept Med, Ion Channel & Calcium Signaling Unit, Boston, MA 02118 USA
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2008年 / 586卷 / 13期
关键词
D O I
10.1113/jphysiol.2008.154997
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The mechanism of store-operated Ca2+ entry (SOCE) remains one of the intriguing mysteries in the field of Ca2+ signalling. Recent discoveries have resulted in the molecular identification of STIM1 as a Ca2+ sensor in endoplasmic reticulum, Orai1 (CRACM1) as a plasma membrane channel that is activated by the store-operated pathway, and iPLA(2)beta as an essential component of signal transduction from the stores to the plasma membrane channels. Numerous studies have confirmed that molecular knock-down of any one of these three molecules impair SOCE in a wide variety of cell types, but their mutual relations are far from being understood. This report will focus on the functional roles of Orai1, STIM1 and iPLA(2)beta, and will address some specific questions about Orai1 and TRPC1, and their relation to SOC channels in excitable and non-excitable cells. Also, it will analyse the novel role of STIM1 as a trigger for CIF production, and the complex relationship between STIM1 and Orai1 expression, puncta formation and SOCE activation. It will highlight some of the most recent findings that may challenge simple conformational coupling models of SOCE, and will offer some new perspectives on the complex relationships between Orai1, STIM1 and iPLA(2)beta in the SOCE pathway.
引用
收藏
页码:3035 / 3042
页数:8
相关论文
共 73 条
[1]   TRPC1: a core component of store-operated calcium channels [J].
Ambudkar, I. S. .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2007, 35 :96-100
[2]   Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum [J].
Baba, Yoshihiro ;
Hayashit, Kenji ;
Fujii, Yoko ;
Mizushima, Akiko ;
Watarai, Hiroshi ;
Wakamori, Minoru ;
Numaga, Takuro ;
Mori, Yasuo ;
Iino, Masamitsu ;
Hikida, Masaki ;
Kurosaki, Tomohiro .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (45) :16704-16709
[3]   An examination of the secretion-like coupling model for the activation of the Ca2+ release-activated Ca2+ current ICRAC in RBL-1 cells [J].
Bakowski, D ;
Glitsch, MD ;
Parekh, AB .
JOURNAL OF PHYSIOLOGY-LONDON, 2001, 532 (01) :55-71
[4]   Cellular regulation and proposed biological functions of group VIA calcium-independent phospholipase A2 in activated cells [J].
Balsinde, J ;
Balboa, MA .
CELLULAR SIGNALLING, 2005, 17 (09) :1052-1062
[5]   Function and inhibition of intracellular calcium-independent phospholipase A(2) [J].
Balsinde, J ;
Dennis, EA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (26) :16069-16072
[6]   TRPC1: store-operated channel and more [J].
Beech, DJ .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2005, 451 (01) :53-60
[7]   Ca2+-independent phospholipase A2 enhances store-operated Ca2+ entry in dystrophic skeletal muscle fibers [J].
Boittin, Francois-Xavier ;
Petermann, Olivier ;
Hirn, Carole ;
Mittaud, Peggy ;
Dorchies, Olivier M. ;
Roulet, Emmanuelle ;
Ruegg, Urs T. .
JOURNAL OF CELL SCIENCE, 2006, 119 (18) :3733-3742
[8]   CIF and other mysteries of the store-operated Ca2+-entry pathway [J].
Bolotina, VM ;
Csutora, P .
TRENDS IN BIOCHEMICAL SCIENCES, 2005, 30 (07) :378-387
[9]   Modulation of Ca2+ entry by polypeptides of the inositol 1,4,5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP):: Evidence for roles of TRP and IP3R in store depletion-activated Ca2+ entry [J].
Boulay, G ;
Brown, DM ;
Qin, N ;
Jiang, MS ;
Dietrich, A ;
Zhu, MX ;
Chen, ZG ;
Birnbaumer, M ;
Mikoshiba, K ;
Birnbaumer, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (26) :14955-14960
[10]   Close functional coupling between Ca2+ release-activated Ca2+ channels, arachidonic acid release, and leukotriene C4 secretion [J].
Chang, WC ;
Parekh, AB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (29) :29994-29999