The three-dimensional structure of flavodoxin reductase from Escherichia coli at 1.7 angstrom resolution

被引:122
作者
Ingelman, M
Bianchi, V
Eklund, H
机构
[1] SWEDISH UNIV AGR SCI, UPPSALA BIOMED CTR, DEPT MOL BIOL, S-75124 UPPSALA, SWEDEN
[2] KAROLINSKA INST, MED NOBEL INST, MBB, DEPT BIOCHEM 1, S-17177 STOCKHOLM, SWEDEN
关键词
flavodoxin reductase; ferredoxin reductase; crystal structure; flavin; refinement;
D O I
10.1006/jmbi.1997.0957
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Flavodoxin reductase from Escherichia coli is an FAD-containing oxido-reductase that transports electrons between flavodoxin or ferredoxin and NADPH. Together with flavodoxin, the enzyme is involved in the reductive activation of three E. coli enzymes: cobalamin-dependent methionine synthase, pyruvate formate lyase and anaerobic ribonucleotide reductase. An additional function for the oxidoreductase arrears to be to protect the bacteria against oxygen radicals. The three-dimensional structure of flavodoxin reductase has been solved by multiple isomorphous replacement, and has been refined at 1.7 Angstrom to an R-value of 18.4% and R-free 24.8%. The monomeric molecule contains one beta-sandwich FAD domain and an alpha/beta NADP domain. The overall structure is similar to other reductases of the NADP-ferredoxin reductase family in spite of the low sequence similarities within the family. Flavodoxin reductase lacks the loop which is involved in the binding of the adenosine moiety of FAD in other FAD binding enzymes of the superfamily but is missing in the FMN binding phthalate dioxygenase reductase. Instead of this loop, the adenine interacts with an extra tryptophan at the C terminus. The FAD in flavodoxin reductase has an unusual bent conformation with a hydrogen bond between the adenine and the isoalloxazine. This is probably the cause of the unusual spectrum of the enzyme. There is a pronounced cleft close to the isoalloxazine that appears to be well suited for binding of flavodoxin/ferredoxin. Two extra short strands of the NADP-binding domain probably act as an anchor point for the binding of flavodoxin. (C) 1997 Academic Press Limited.
引用
收藏
页码:147 / 157
页数:11
相关论文
共 49 条
[1]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[2]   INTERRUPTION OF THE FERREDOXIN (FLAVODOXIN) NADP(+) OXIDOREDUCTASE GENE OF ESCHERICHIA-COLI DOES NOT AFFECT ANAEROBIC GROWTH BUT INCREASES SENSITIVITY TO PARAQUAT [J].
BIANCHI, V ;
HAGGARDLJUNGQUIST, E ;
PONTIS, E ;
REICHARD, P .
JOURNAL OF BACTERIOLOGY, 1995, 177 (15) :4528-4531
[3]   ESCHERICHIA-COLI FERREDOXIN NADP+ REDUCTASE - ACTIVATION OF ESCHERICHIA-COLI ANAEROBIC RIBONUCLEOTIDE REDUCTION, CLONING OF THE GENE (FPR), AND OVEREXPRESSION OF THE PROTEIN [J].
BIANCHI, V ;
REICHARD, P ;
ELIASSON, R ;
PONTIS, E ;
KROOK, M ;
JORNVALL, H ;
HAGGARDLJUNGOUIST, E .
JOURNAL OF BACTERIOLOGY, 1993, 175 (06) :1590-1595
[4]   FLAVODOXIN IS REQUIRED FOR THE ACTIVATION OF THE ANAEROBIC RIBONUCLEOTIDE REDUCTASE [J].
BIANCHI, V ;
ELIASSON, R ;
FONTECAVE, M ;
MULLIEZ, E ;
HOOVER, DM ;
MATTHEWS, RG ;
REICHARD, P .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1993, 197 (02) :792-797
[5]  
BLASCHKOWSKI HP, 1982, EUR J BIOCHEM, V123, P563
[6]   A SYSTEM FOR COLLECTION AND ONLINE INTEGRATION OF X-RAY-DIFFRACTION DATA FROM A MULTIWIRE AREA DETECTOR [J].
BLUM, M ;
METCALF, P ;
HARRISON, SC ;
WILEY, DC .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1987, 20 :235-242
[7]  
BRUNGER A, 1989, XPLOR MANUAL
[8]   FREE R-VALUE - A NOVEL STATISTICAL QUANTITY FOR ASSESSING THE ACCURACY OF CRYSTAL-STRUCTURES [J].
BRUNGER, AT .
NATURE, 1992, 355 (6359) :472-475
[9]   REFINED CRYSTAL-STRUCTURE OF SPINACH FERREDOXIN REDUCTASE AT 1.7 ANGSTROM RESOLUTION - OXIDIZED, REDUCED AND 2'-PHOSPHO-5'-AMP BOUND-STATES [J].
BRUNS, CM ;
KARPLUS, PA .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 247 (01) :125-145
[10]   PHTHALATE DIOXYGENASE REDUCTASE - A MODULAR STRUCTURE FOR ELECTRON-TRANSFER FROM PYRIDINE-NUCLEOTIDES TO [2FE-2S] [J].
CORRELL, CC ;
BATIE, CJ ;
BALLOU, DP ;
LUDWIG, ML .
SCIENCE, 1992, 258 (5088) :1604-1610