Scrutinizing MHC-I Binding Peptides and Their Limits of Variation

被引:30
作者
Koch, Christian P. [1 ]
Perna, Anna M. [1 ]
Pillong, Max [1 ]
Todoroff, Nickolay K. [1 ]
Wrede, Paul [2 ]
Folkers, Gerd [1 ]
Hiss, Jan A. [1 ]
Schneider, Gisbert [1 ]
机构
[1] ETH, Dept Chem & Appl Biosci, Inst Pharmaceut Sci, Zurich, Switzerland
[2] Charite, D-13353 Berlin, Germany
基金
瑞士国家科学基金会;
关键词
T-CELL; PREDICTION; COMPLEX; EPITOPES; DATABASE; H-2K(B); SURFACE; SEARCH; DESIGN;
D O I
10.1371/journal.pcbi.1003088
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Designed peptides that bind to major histocompatibility protein I (MHC-I) allomorphs bear the promise of representing epitopes that stimulate a desired immune response. A rigorous bioinformatical exploration of sequence patterns hidden in peptides that bind to the mouse MHC-I allomorph H-2K(b) is presented. We exemplify and validate these motif findings by systematically dissecting the epitope SIINFEKL and analyzing the resulting fragments for their binding potential to H-2K(b) in a thermal denaturation assay. The results demonstrate that only fragments exclusively retaining the carboxy- or amino-terminus of the reference peptide exhibit significant binding potential, with the N-terminal pentapeptide SIINF as shortest ligand. This study demonstrates that sophisticated machine-learning algorithms excel at extracting fine-grained patterns from peptide sequence data and predicting MHC-I binding peptides, thereby considerably extending existing linear prediction models and providing a fresh view on the computer-based molecular design of future synthetic vaccines. The server for prediction is available at http://modlab-cadd.ethz.ch (SLiDER tool, MHC-I version 2012).
引用
收藏
页数:9
相关论文
共 64 条
[1]   PREDICTION OF BINDING TO MHC CLASS-I MOLECULES [J].
ADAMS, HP ;
KOZIOL, JA .
JOURNAL OF IMMUNOLOGICAL METHODS, 1995, 185 (02) :181-190
[2]  
[Anonymous], 2011, JANEWAYS IMMUNOBIOLO
[3]  
Bengio Y., 2006, Advances in Neural Information Processing Systems, V19, DOI DOI 10.7551/MITPRESS/7503.003.0024
[4]   Design of peptide and polypeptide vaccines [J].
BenYedidia, T ;
Arnon, R .
CURRENT OPINION IN BIOTECHNOLOGY, 1997, 8 (04) :442-448
[5]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[6]   Specific and general HLA-DR binding motifs:: Comparison of algorithms [J].
Borrás-Cuesta, F ;
Golvano, JJ ;
García-Granero, M ;
Sarobe, P ;
Riezu-Boj, JI ;
Huarte, E ;
Lasarte, JJ .
HUMAN IMMUNOLOGY, 2000, 61 (03) :266-278
[7]   Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network [J].
Brusic, V ;
Rudy, G ;
Honeyman, M ;
Hammer, J ;
Harrison, L .
BIOINFORMATICS, 1998, 14 (02) :121-130
[8]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[9]   Fundamentals of Vaccine Immunology [J].
Clem, Angela S. .
JOURNAL OF GLOBAL INFECTIOUS DISEASES, 2011, 3 (01) :73-78
[10]   H-2D(D) EXPLOITS A 4 RESIDUE PEPTIDE BINDING MOTIF [J].
CORR, M ;
BOYD, LF ;
PADLAN, EA ;
MARGULIES, DH .
JOURNAL OF EXPERIMENTAL MEDICINE, 1993, 178 (06) :1877-1892