Automatic Bifurcation Detection in Coronary IVUS Sequences

被引:23
作者
Alberti, Marina [1 ,2 ]
Balocco, Simone [1 ,2 ]
Gatta, Carlo [1 ,2 ]
Ciompi, Francesco [1 ,2 ]
Pujol, Oriol [1 ,2 ]
Silva, Joana [3 ]
Carrillo, Xavier [4 ]
Radeva, Petia [1 ,2 ]
机构
[1] Univ Barcelona, Dept Matemat Aplicada & Anal, Barcelona 08007, Spain
[2] Comp Vis Ctr, Barcelona 08193, Spain
[3] Coimbras Hosp Ctr, P-3041801 Coimbra, Portugal
[4] Univ Hosp Germans Trias & Pujol, Badalona 08916, Spain
关键词
Contextual classification; coronary bifurcations; intravascular ultrasound (IVUS); texture analysis; INTRAVASCULAR ULTRASOUND; IN-VIVO; SEGMENTATION; WALL;
D O I
10.1109/TBME.2011.2181372
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, we present a fully automatic method which identifies every bifurcation in an intravascular ultrasound (IVUS) sequence, the corresponding frames, the angular orientation with respect to the IVUS acquisition, and the extension. This goal is reached using a two-level classification scheme: first, a classifier is applied to a set of textural features extracted from each image of a sequence. A comparison among three state-of-the-art discriminative classifiers (AdaBoost, random forest, and support vector machine) is performed to identify the most suitable method for the branching detection task. Second, the results are improved by exploiting contextual information using a multiscale stacked sequential learning scheme. The results are then successively refined using a-priori information about branching dimensions and geometry. The proposed approach provides a robust tool for the quick review of pullback sequences, facilitating the evaluation of the lesion at bifurcation sites. The proposed method reaches an F-Measure score of 86.35%, while the F-Measure scores for inter- and intraobserver variability are 71.63% and 76.18%, respectively. The obtained results are positive. Especially, considering the branching detection task is very challenging, due to high variability in bifurcation dimensions and appearance.
引用
收藏
页码:1022 / 1031
页数:10
相关论文
共 35 条
[11]  
Das S., 2001, P 18 INT C MACHINE L, P74, DOI DOI 10.5555/645530.658297
[12]  
DAVIES MJ, 1985, BRIT HEART J, V53, P363
[13]  
Demsar J, 2006, J MACH LEARN RES, V7, P1
[14]   A decision-theoretic generalization of on-line learning and an application to boosting [J].
Freund, Y ;
Schapire, RE .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1997, 55 (01) :119-139
[15]   Atherothrombosis and high-risk plaque Part I: Evolving concepts [J].
Fuster, V ;
Moreno, PR ;
Fayad, ZA ;
Corti, R ;
Badimon, JJ .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2005, 46 (06) :937-954
[16]   Multi-scale stacked sequential learning [J].
Gatta, Carlo ;
Puertas, Eloi ;
Pujol, Oriol .
PATTERN RECOGNITION, 2011, 44 (10-11) :2414-2426
[17]  
Gatta C, 2010, LECT NOTES COMPUT SC, V6362, P59
[18]   Fast Rigid Registration of Vascular Structures in IVUS Sequences [J].
Gatta, Carlo ;
Pujol, Oriol ;
Rodriguez Leor, Oriol ;
Mauri Ferre, Josepa ;
Radeva, Petia .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2009, 13 (06) :1006-1011
[19]   Anatomic characteristics of culprit sites in acute coronary syndromes [J].
Katritsis, Demosthenes G. ;
Efstathopoulos, Efstathios P. ;
Pantos, John ;
Korovesis, Socrates ;
Kourlaba, Georgia ;
Kazantzidis, Socrates ;
Marmarelis, Vasilios ;
Voridis, Eutychios .
JOURNAL OF INTERVENTIONAL CARDIOLOGY, 2008, 21 (02) :140-150
[20]   Atheroma morphology and distribution in proximal left anterior descending coronary artery: In vivo observations [J].
Kimura, BJ ;
Russo, RJ ;
Bhargava, V ;
McDaniel, MB ;
Peterson, KL ;
DeMaria, AN .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 1996, 27 (04) :825-831