Theory of acoustic scattering by supported ridges at a solid-liquid interface

被引:2
作者
Khelif, A [1 ]
Vasseur, JO
Lambin, P
Djafari-Rouhani, B
Deymier, PA
机构
[1] Fac Univ Notre Dame Paix, Dept Phys, Phys Solide Lab, B-5000 Namur, Belgium
[2] Univ Lille 1, Lab Dynam & Struct Mat Mol, UFR Phys, UPRESA CNRS 8024, F-59655 Villeneuve Dascq, France
[3] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 03期
关键词
D O I
10.1103/PhysRevE.65.036601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We combine a general Green's function formalism and an approach due to Nyborg [W. L. Nyborg, in Acoustic Streaming, Physical Acoustics, edited by W. P. Mason (Academic, London, 1965), Vol. II B, Chap. 11] to calculate the first-order pressure and second-order pressure gradient fields in the vicinity of solid inhomogeneities at a solid/liquid interface. We treat the problem of scattering of an incident acoustic plane wave by a single ridge and two parallel ridges separated by a trench on a planar substrate. The calculated vibrational density of states shows the existence of resonances at low frequencies, especially in the case of a trench. Excitation of a trench resonant vibrational mode enhances the magnitude of the first-order pressure and of the second-order pressure gradient. The resonant frequencies of a trench decrease and the pressure enhancement increases with increasing aspect ratio of the ridges (height to width).
引用
收藏
页码:1 / 036601
页数:7
相关论文
共 13 条
[1]   Theoretical calculation of the acoustic force on a patterned silicon wafer during megasonic cleaning [J].
Deymier, PA ;
Khelif, A ;
Djafari-Rouhani, B ;
Vasseur, JO ;
Raghavan, S .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (05) :2423-2429
[2]   Streaming and removal forces due to second-order sound field during megasonic cleaning of silicon wafers [J].
Deymier, PA ;
Vasseur, JO ;
Khelif, A ;
Djafari-Rouhani, B ;
Dobrzynski, L ;
Raghavan, S .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (11) :6821-6835
[3]   GREENS-FUNCTION THEORY OF ACOUSTIC SURFACE SHAPE RESONANCES [J].
DJAFARIROUHANI, B ;
MARADUDIN, AA .
SOLID STATE COMMUNICATIONS, 1990, 73 (02) :173-177
[4]   ACOUSTIC RESONANCES OF ADSORBED WIRES AND CHANNELS [J].
DJAFARIROUHANI, B ;
DOBRZYNSKI, L .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1993, 5 (44) :8177-8194
[5]   ROUGHNESS INDUCED SURFACE ACOUSTIC RESONANCES [J].
DJAFARIROUHANI, B ;
DOBRZYNSKI, L ;
KHELIF, A .
PROGRESS IN SURFACE SCIENCE, 1995, 48 (1-4) :301-311
[6]   INTERFACE RESPONSE THEORY OF CONTINUOUS COMPOSITE SYSTEMS [J].
DOBRZYNSKI, L .
SURFACE SCIENCE REPORTS, 1990, 11 (5-6) :139-178
[7]  
GOUK R, 1996, THESIS U MINNESOTA
[8]   Theory of acoustic scattering by a supported wire [J].
Khelif, A ;
Rouhani, BD .
JOURNAL OF APPLIED PHYSICS, 1997, 81 (11) :7141-7147
[9]   Surface shear horizontal waves associated with a periodic array of wires deposited on a substrate [J].
Khelif, A ;
Djafari-Rouhani, B ;
Lambin, P .
EUROPEAN PHYSICAL JOURNAL B, 2001, 21 (03) :437-445
[10]   SHEAR HORIZONTAL ACOUSTIC SURFACE SHAPE RESONANCES [J].
MARADUDIN, AA ;
RYAN, P ;
MCGURN, AR .
PHYSICAL REVIEW B, 1988, 38 (05) :3068-3074