Tensor Discriminative Locality Alignment for Hyperspectral Image Spectral-Spatial Feature Extraction

被引:99
作者
Zhang, Liangpei [1 ]
Zhang, Lefei [1 ]
Tao, Dacheng [2 ,3 ]
Huang, Xin [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
[2] Univ Technol Sydney, Ctr Quantum Computat & Intelligent Syst, Sydney, NSW 2007, Australia
[3] Univ Technol Sydney, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2013年 / 51卷 / 01期
基金
中国国家自然科学基金;
关键词
Classification; feature extraction; hyperspectral image (HSI); remote sensing; tensor; DIMENSIONALITY REDUCTION; CLASSIFICATION; MANIFOLD; ALGORITHM; SELECTION; RECONSTRUCTION; SEGMENTATION; INFORMATION; SPACE;
D O I
10.1109/TGRS.2012.2197860
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this paper, we propose a method for the dimensionality reduction (DR) of spectral-spatial features in hyperspectral images (HSIs), under the umbrella of multilinear algebra, i.e., the algebra of tensors. The proposed approach is a tensor extension of conventional supervised manifold-learning-based DR. In particular, we define a tensor organization scheme for representing a pixel's spectral-spatial feature and develop tensor discriminative locality alignment (TDLA) for removing redundant information for subsequent classification. The optimal solution of TDLA is obtained by alternately optimizing each mode of the input tensors. The methods are tested on three public real HSI data sets collected by hyperspectral digital imagery collection experiment, reflective optics system imaging spectrometer, and airborne visible/infrared imaging spectrometer. The classification results show significant improvements in classification accuracies while using a small number of features.
引用
收藏
页码:242 / 256
页数:15
相关论文
共 63 条
[1]  
[Anonymous], 2002, Principal components analysis
[2]  
[Anonymous], 2003, Statistical pattern recognition
[3]  
[Anonymous], 2006, REMOTE SENSING DIGIT
[4]  
[Anonymous], 2003, WILEY HOBOKEN
[5]   Exploiting manifold geometry in hyperspectral imagery [J].
Bachmann, CM ;
Ainsworth, TL ;
Fusina, RA .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :441-454
[6]   Classification of hyperspectral data from urban areas based on extended morphological profiles [J].
Benediktsson, JA ;
Palmason, JA ;
Sveinsson, JR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :480-491
[7]  
Bhatia R., 2013, MATRIX ANAL
[8]   Max-Min Distance Analysis by Using Sequential SDP Relaxation for Dimension Reduction [J].
Bian, Wei ;
Tao, Dacheng .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) :1037-1050
[9]   Improvement of Target-Detection Algorithms Based on Adaptive Three-Dimensional Filtering [J].
Bourennane, Salah ;
Fossati, Caroline ;
Cailly, Alexis .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (04) :1383-1395
[10]   Constrained band selection for hyperspectral imagery [J].
Chang, Chein-I ;
Wang, Su .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (06) :1575-1585