Tensor Discriminative Locality Alignment for Hyperspectral Image Spectral-Spatial Feature Extraction

被引:99
作者
Zhang, Liangpei [1 ]
Zhang, Lefei [1 ]
Tao, Dacheng [2 ,3 ]
Huang, Xin [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
[2] Univ Technol Sydney, Ctr Quantum Computat & Intelligent Syst, Sydney, NSW 2007, Australia
[3] Univ Technol Sydney, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2013年 / 51卷 / 01期
基金
中国国家自然科学基金;
关键词
Classification; feature extraction; hyperspectral image (HSI); remote sensing; tensor; DIMENSIONALITY REDUCTION; CLASSIFICATION; MANIFOLD; ALGORITHM; SELECTION; RECONSTRUCTION; SEGMENTATION; INFORMATION; SPACE;
D O I
10.1109/TGRS.2012.2197860
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this paper, we propose a method for the dimensionality reduction (DR) of spectral-spatial features in hyperspectral images (HSIs), under the umbrella of multilinear algebra, i.e., the algebra of tensors. The proposed approach is a tensor extension of conventional supervised manifold-learning-based DR. In particular, we define a tensor organization scheme for representing a pixel's spectral-spatial feature and develop tensor discriminative locality alignment (TDLA) for removing redundant information for subsequent classification. The optimal solution of TDLA is obtained by alternately optimizing each mode of the input tensors. The methods are tested on three public real HSI data sets collected by hyperspectral digital imagery collection experiment, reflective optics system imaging spectrometer, and airborne visible/infrared imaging spectrometer. The classification results show significant improvements in classification accuracies while using a small number of features.
引用
收藏
页码:242 / 256
页数:15
相关论文
共 63 条
[11]   Progressive dimensionality reduction by transform for hyperspectral imagery [J].
Chang, Chein-I ;
Safavi, Haleh .
PATTERN RECOGNITION, 2011, 44 (10-11) :2760-2773
[12]   Estimation of number of spectrally distinct signal sources in hyperspectral imagery [J].
Chang, CI ;
Du, Q .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (03) :608-619
[13]   An entropy based classification scheme for land applications of polarimetric SAR [J].
Cloude, SR ;
Pottier, E .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35 (01) :68-78
[14]  
Crawford MM, 2011, AUGMENT VIS REAL, V3, P207, DOI 10.1007/978-3-642-14212-3_11
[15]   Supervised tensor learning [J].
Dacheng Tao ;
Xuelong Li ;
Xindong Wu ;
Weiming Hu ;
Stephen J. Maybank .
KNOWLEDGE AND INFORMATION SYSTEMS, 2007, 13 (01) :1-42
[16]   Morphological Attribute Profiles for the Analysis of Very High Resolution Images [J].
Dalla Mura, Mauro ;
Benediktsson, Jon Atli ;
Waske, Bjoern ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (10) :3747-3762
[17]   Random-Selection-Based Anomaly Detector for Hyperspectral Imagery [J].
Du, Bo ;
Zhang, Liangpei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (05) :1578-1589
[18]  
Fukunaga K, 1990, INTRO STAT PATTERN R, V2nd
[19]   IMAGING SPECTROMETRY FOR EARTH REMOTE-SENSING [J].
GOETZ, AFH ;
VANE, G ;
SOLOMON, JE ;
ROCK, BN .
SCIENCE, 1985, 228 (4704) :1147-1153
[20]   A TRANSFORMATION FOR ORDERING MULTISPECTRAL DATA IN TERMS OF IMAGE QUALITY WITH IMPLICATIONS FOR NOISE REMOVAL [J].
GREEN, AA ;
BERMAN, M ;
SWITZER, P ;
CRAIG, MD .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1988, 26 (01) :65-74