Transcriptional regulation of fatty acid biosynthesis in Streptococcus pneumoniae

被引:87
作者
Lu, YJ [1 ]
Rock, CO [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Infect Dis, Memphis, TN 38105 USA
关键词
D O I
10.1111/j.1365-2958.2005.04951.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The transcriptional regulation of membrane fatty acid composition in the human pathogen Streptococcus pneumoniae is distinct from the systems utilized in the model organisms Escherichia coli and Bacillus subtilis. The genes encoding the components of type II fatty acid biosynthesis cluster at a single location within the S. pneumoniae genome, and the second gene in this cluster (SPR0376) encodes a transcription factor (FabT) that belongs to the MarR superfamily. Derivatives of S. pneumoniae strain D39 were constructed that lacked functional FabT. This strain had significantly elevated levels of saturated fatty acids and longer chain lengths than the control strain, was unable to grow at pH 5.5 and had increased sensitivity to detergent. Eliminating FabT function increased the expression levels of all of fab genes with the notable exception of fabM. FabT was purified and bound to the DNA palindrome located within the promoter regions of the fabT and fabK genes within the cluster. The analysis of cells with increased expression of individual genes leads to a model where the physical properties of the S. pneumoniae membrane is controlled primarily by the activity of FabK, the enoyl reductase, which diverts intermediates to saturated fatty acid formation, in contrast to E. coli where FabB, an elongation condensing enzyme, pulls the pathway in the direction of unsaturated acid synthesis.
引用
收藏
页码:551 / 566
页数:16
相关论文
共 66 条
[1]   STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES INDUCTION OF TRANSFORMATION BY A DESOXYRIBONUCLEIC ACID FRACTION ISOLATED FROM PNEUMOCOCCUS TYPE III [J].
Avery, Oswald T. ;
MacLeod, Colin M. ;
McCarty, Maclyn .
JOURNAL OF EXPERIMENTAL MEDICINE, 1944, 79 (02) :137-158
[2]   Differential fluorescence induction reveals Streptococcus pneumoniae loci regulated by competence stimulatory peptide [J].
Bartilson, M ;
Marra, A ;
Christine, J ;
Asundi, JS ;
Schneider, WP ;
Hromockyj, AE .
MOLECULAR MICROBIOLOGY, 2001, 39 (01) :126-135
[3]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   Transformation of a type 4 encapsulated strain of Streptococcus pneumoniae [J].
Bricker, AL ;
Camilli, A .
FEMS MICROBIOLOGY LETTERS, 1999, 172 (02) :131-135
[6]  
BROWN T, 1994, CURRENT PROTOCOLS MO
[7]   Regulation of expression of the fructan hydrolase gene of Streptococcus mutans GS-5 by induction and carbon catabolite repression [J].
Burne, RA ;
Wen, ZT ;
Chen, YYM ;
Penders, JEC .
JOURNAL OF BACTERIOLOGY, 1999, 181 (09) :2863-2871
[8]   Escherichia coli FadR positively regulates transcription of the fabB fatty acid biosynthetic gene [J].
Campbell, JW ;
Cronan, JE .
JOURNAL OF BACTERIOLOGY, 2001, 183 (20) :5982-5990
[9]   BETA-HYDROXYDECANOYL THIO ESTER DEHYDRASE DOES NOT CATALYZE A RATE-LIMITING STEP IN ESCHERICHIA-COLI UNSATURATED FATTY-ACID SYNTHESIS [J].
CLARK, DP ;
DEMENDOZA, D ;
POLACCO, ML ;
CRONAN, JE .
BIOCHEMISTRY, 1983, 22 (25) :5897-5902
[10]   FadR, transcriptional co-ordination of metabolic expediency [J].
Cronan, JE ;
Subrahmanyam, S .
MOLECULAR MICROBIOLOGY, 1998, 29 (04) :937-943