Semiclassical limit of 4-dimensional spin foam models

被引:152
作者
Conrady, Florian [1 ]
Freidel, Laurent [1 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON, Canada
来源
PHYSICAL REVIEW D | 2008年 / 78卷 / 10期
关键词
D O I
10.1103/PhysRevD.78.104023
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the semiclassical properties of the Riemannian spin foam models with Immirzi parameter that are constructed via coherent states. We show that, in the semiclassical limit, the quantum spin foam amplitudes of an arbitrary triangulation are exponentially suppressed if the face spins do not correspond to a discrete geometry. When they do arise from a geometry, the amplitudes reduce to the exponential of i times the Regge action. Remarkably, the dependence on the Immirzi parameter disappears in this limit.
引用
收藏
页数:18
相关论文
共 43 条
[1]   Complete LQG propagator: Difficulties with the barrett-crane vertex [J].
Alesci, Emanuele ;
Rovelli, Carlo .
PHYSICAL REVIEW D, 2007, 76 (10)
[2]   An introduction to loop quantum gravity through cosmology [J].
Ashtekar, A. .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2007, 122 (02) :135-155
[3]   WEAVING A CLASSICAL METRIC WITH QUANTUM THREADS [J].
ASHTEKAR, A ;
ROVELLI, C ;
SMOLIN, L .
PHYSICAL REVIEW LETTERS, 1992, 69 (02) :237-240
[4]   GRAVITONS AND LOOPS [J].
ASHTEKAR, A ;
ROVELLI, C ;
SMOLIN, L .
PHYSICAL REVIEW D, 1991, 44 (06) :1740-1755
[5]   Loop quantum cosmology of k=1 FRW models [J].
Ashtekar, Abhay ;
Pawlowski, Tomasz ;
Singh, Parampreet ;
Vandersloot, Kevin .
PHYSICAL REVIEW D, 2007, 75 (02)
[6]   Spin-foam models of Riemannian quantum gravity [J].
Baez, JC ;
Christensen, JD ;
Halford, TR ;
Tsang, DC .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (18) :4627-4648
[7]   Relativistic spin networks and quantum gravity [J].
Barrett, JW ;
Crane, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (06) :3296-3302
[8]   Asymptotics of relativistic spin networks [J].
Barrett, JW ;
Steele, CM .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (07) :1341-1361
[9]   A note on area variables in Regge calculus [J].
Barrett, JW ;
Rocek, M ;
Williams, RM .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (04) :1373-1376
[10]  
BIANCHI E, ARXIV08081107