Asymptotics of relativistic spin networks

被引:80
作者
Barrett, JW [1 ]
Steele, CM [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
关键词
D O I
10.1088/0264-9381/20/7/307
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The stationary phase technique is used to calculate asymptotic formulae for SO(4) relativistic spin networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j-symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the spin network evaluation. Finally, we discuss the asymptotics of the SO(3, 1) 10j-symbol.
引用
收藏
页码:1341 / 1361
页数:21
相关论文
共 14 条
[1]  
[Anonymous], ADV THEOR MATH PHYS
[2]   Positivity of spin foam amplitudes [J].
Baez, JC ;
Christensen, JD .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (08) :2291-2305
[3]  
BAEZ JC, 2002, GRQC0208010
[4]  
BAEZ JC, 2002, GRQC0202017
[5]  
Barrett J W., 1999, Adv. Theor. Math. Phys., V3, P209
[6]   Relativistic spin networks and quantum gravity [J].
Barrett, JW ;
Crane, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (06) :3296-3302
[7]   A Lorentzian signature model for quantum general relativity [J].
Barrett, JW ;
Crane, L .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (16) :3101-3118
[8]   SEMICLASSICAL LIMITS OF SIMPLICIAL QUANTUM-GRAVITY [J].
BARRETT, JW ;
FOXON, TJ .
CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (03) :543-556
[9]   FIRST-ORDER REGGE CALCULUS [J].
BARRETT, JW .
CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (11) :2723-2730
[10]  
Block, 1968, SPECTROSCOPIC GROUP