Transport phenomena in nanofluidics

被引:1577
作者
Schoch, Reto B. [1 ,2 ,3 ]
Han, Jongyoon [2 ,3 ]
Renaud, Philippe [1 ]
机构
[1] Ecole Polytech Fed Lausanne, STI LMIS, Microsyst Lab, CH-1015 Lausanne, Switzerland
[2] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[3] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
关键词
D O I
10.1103/RevModPhys.80.839
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The transport of fluid in and around nanometer-sized objects with at least one characteristic dimension below 100 nm enables the occurrence of phenomena that are impossible at bigger length scales. This research field was only recently termed nanofluidics, but it has deep roots in science and technology. Nanofluidics has experienced considerable growth in recent years, as is confirmed by significant scientific and practical achievements. This review focuses on the physical properties and operational mechanisms of the most common structures, such as nanometer-sized openings and nanowires in solution on a chip. Since the surface-to-volume ratio increases with miniaturization, this ratio is high in nanochannels, resulting in surface-charge-governed transport, which allows ion separation and is described by a comprehensive electrokinetic theory. The charge selectivity is most pronounced if the Debye screening length is comparable to the smallest dimension of the nanochannel cross section, leading to a predominantly counterion containing nanometer-sized aperture. These unique properties contribute to the charge-based partitioning of biomolecules at the microchannel-nanochannel interface. Additionally, at this free-energy barrier, size-based partitioning can be achieved when biomolecules and nanoconstrictions have similar dimensions. Furthermore, nanopores and nanowires are rooted in interesting physical concepts, and since these structures demonstrate sensitive, label-free, and real-time electrical detection of biomolecules, the technologies hold great promise for the life sciences. The purpose of this review is to describe physical mechanisms on the nanometer scale where new phenomena occur, in order to exploit these unique properties and realize integrated sample preparation and analysis systems.
引用
收藏
页码:839 / 883
页数:45
相关论文
共 542 条
[1]   BEHAVIOR OF A PYROGENIC SILICA IN SIMPLE ELECTROLYTES [J].
ABENDROTH, RP .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1970, 34 (04) :591-+
[2]   Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding [J].
Abgrall, Patrick ;
Low, Lee-Ngo ;
Nguyen, Nam-Trung .
LAB ON A CHIP, 2007, 7 (04) :520-522
[3]   Characterization of polyelectrolyte multilayers by the streaming potential method [J].
Adamczyk, Z ;
Zembala, M ;
Warszynski, P ;
Jachimska, B .
LANGMUIR, 2004, 20 (24) :10517-10525
[4]   Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials [J].
Ahn, Jong-Hyun ;
Kim, Hoon-Sik ;
Lee, Keon Jae ;
Jeon, Seokwoo ;
Kang, Seong Jun ;
Sun, Yugang ;
Nuzzo, Ralph G. ;
Rogers, John A. .
SCIENCE, 2006, 314 (5806) :1754-1757
[5]  
AJDARI A, 1992, CR ACAD SCI II, V315, P1635
[6]   Microscopic kinetics of DNA translocation through synthetic nanopores [J].
Aksimentiev, A ;
Heng, JB ;
Timp, G ;
Schulten, K .
BIOPHYSICAL JOURNAL, 2004, 87 (03) :2086-2097
[7]   Layer-by-layer assembly of polyelectrolytes in nanopores [J].
Alem, Halima ;
Blondeau, Francoise ;
Glinel, Karine ;
Demoustier-Champagne, Sophie ;
Jonas, Alain M. .
MACROMOLECULES, 2007, 40 (09) :3366-3372
[8]   Numerical calculations of the pH of maximal protein stability - The effect of the sequence composition and three-dimensional structure [J].
Alexov, E .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2004, 271 (01) :173-185
[9]   Proteome and proteomics: New technologies, new concepts, and new words [J].
Anderson, NL ;
Anderson, NG .
ELECTROPHORESIS, 1998, 19 (11) :1853-1861
[10]  
[Anonymous], 1994, Enabling Technologies for Cultured Neural Networks