Hydrothermal self-assembling of ZnO nanorods into sphere-like superstructures and their optical characteristics

被引:34
作者
Gao, Y. J. [1 ,2 ]
Zhang, W. C. [1 ,2 ]
Wu, X. L. [1 ,2 ]
Xia, Y. [3 ]
Huang, G. S. [1 ,2 ]
Xu, L. L. [1 ,2 ]
Shen, J. C. [1 ,2 ]
Siu, G. G. [4 ]
Chu, Paul K. [4 ]
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Sch Chem & Chem Engn, Nanjing 210096, Peoples R China
[4] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China
关键词
ZnO nanorods; Sphere-like superstructures; Self-assembly;
D O I
10.1016/j.apsusc.2008.06.137
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Self-assembled zinc oxide (ZnO) nanostructures consisting of nanorods were synthesized at low temperature by means of a one-step hydrothermal method using a mixture of hexamethylenetetramine, zinc nitrate [Zn(NO3)(2)center dot 6H(2)O], and sodium hydroxide (NaOH). Freestanding single-crystalline ZnO nanorods with polar surfaces on the sharp ends are congregated by the long-range electrostatic force resulting in the formation of ordered nanorod-based structures. The weak Van der Waals interaction causes random aggregation of some tiny nanostructures on the surfaces of the ordered nanostructures. As a result, sphere-like superstructures revealed by X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy are formed due to energy minimization. In addition, some interesting Raman and photoluminescence properties of the composite ZnO nanorod structures are also discussed in detail. Our results are beneficial to a better understanding of the formation mechanism of some ZnO superstructures. (C) 2008 Elsevier B. V. All rights reserved.
引用
收藏
页码:1982 / 1987
页数:6
相关论文
共 32 条
[1]  
DAMAN TC, 1966, PHYS REV, V142, P570
[2]   Zener model description of ferromagnetism in zinc-blende magnetic semiconductors [J].
Dietl, T ;
Ohno, H ;
Matsukura, F ;
Cibert, J ;
Ferrand, D .
SCIENCE, 2000, 287 (5455) :1019-1022
[3]  
DU CL, 2006, J APPL PHYS, V9
[4]   Epitaxial ZnO piezoelectric thin films for saw filters [J].
Emanetoglu, NW ;
Gorla, C ;
Liu, Y ;
Liang, S ;
Lu, Y .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 1999, 2 (03) :247-252
[5]   Sensor photoresponse of thin-film oxides of zinc and titanium to oxygen gas [J].
Golego, N ;
Studenikin, SA ;
Cocivera, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) :1592-1594
[6]   Low-temperature wafer-scale production of ZnO nanowire arrays [J].
Greene, LE ;
Law, M ;
Goldberger, J ;
Kim, F ;
Johnson, JC ;
Zhang, YF ;
Saykally, RJ ;
Yang, PD .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (26) :3031-3034
[7]   Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes [J].
Hu, JQ ;
Li, Q ;
Meng, XM ;
Lee, CS ;
Lee, ST .
CHEMISTRY OF MATERIALS, 2003, 15 (01) :305-308
[8]   Two-dimensional micrometer-sized single-crystalline ZnO thin nanosheets [J].
Hu, JQ ;
Bando, Y ;
Zhan, JH ;
Li, YB ;
Sekiguchi, T .
APPLIED PHYSICS LETTERS, 2003, 83 (21) :4414-4416
[9]   Room-temperature ultraviolet nanowire nanolasers [J].
Huang, MH ;
Mao, S ;
Feick, H ;
Yan, HQ ;
Wu, YY ;
Kind, H ;
Weber, E ;
Russo, R ;
Yang, PD .
SCIENCE, 2001, 292 (5523) :1897-1899
[10]   Directed assembly of one-dimensional nanostructures into functional networks [J].
Huang, Y ;
Duan, XF ;
Wei, QQ ;
Lieber, CM .
SCIENCE, 2001, 291 (5504) :630-633