Melnikov analysis of chaos in a simple epidemiological model

被引:56
作者
Glendinning, P [1 ]
Perry, LP [1 ]
机构
[1] UNIV CAMBRIDGE, DEPT APPL MATH & THEORET PHYS, CAMBRIDGE CB3 9EW, ENGLAND
关键词
SIR models; chaos; Melnikov's method; homoclinic orbit;
D O I
10.1007/s002850050056
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Melnikov's method is applied to an SIR model of epidemic dynamics with a periodically modulated nonlinear incidence rate. This analysis establishes mathematically, for the first time, the existence of chaotic motion in these models. A related technique also makes it possible to prove that homoclinic bifurcations occurs in the model.
引用
收藏
页码:359 / 373
页数:15
相关论文
共 21 条
[1]  
ANDERSON R M, 1991
[2]   SEASONALITY AND PERIOD-DOUBLING BIFURCATIONS IN AN EPIDEMIC MODEL [J].
ARON, JL ;
SCHWARTZ, IB .
JOURNAL OF THEORETICAL BIOLOGY, 1984, 110 (04) :665-679
[3]   COMPLEX BIFURCATIONS IN A PERIODICALLY FORCED NORMAL-FORM [J].
BAESENS, C ;
NICOLIS, G .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1983, 52 (04) :345-354
[4]  
Chow S. -N., 1994, NORMAL FORMS BIFURCA
[5]   DOES FACILITATION IMPLY A THRESHOLD FOR THE ERADICATION OF LYMPHATIC FILARIASIS [J].
DYE, C .
PARASITOLOGY TODAY, 1992, 8 (04) :109-110
[6]   HOMOCLINIC ORBITS AND MIXED-MODE OSCILLATIONS IN FAR-FROM-EQUILIBRIUM SYSTEMS [J].
GASPARD, P ;
WANG, XJ .
JOURNAL OF STATISTICAL PHYSICS, 1987, 48 (1-2) :151-199
[7]  
Gavrilov N. K., 1973, Mat. Sb. (N.S.), V90, P139
[8]  
Gavrilov NK, 1972, MATH USSR SB, V17, P467, DOI [10.1070/sm1972v017n04abeh001597, DOI 10.1070/SM1972V017N04ABEH001597]
[9]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42, DOI DOI 10.1007/978-1-4612-1140-2
[10]   SOME EPIDEMIOLOGIC MODELS WITH NONLINEAR INCIDENCE [J].
HETHCOTE, HW ;
VANDENDRIESSCHE, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 1991, 29 (03) :271-287