HOMOCLINIC ORBITS AND MIXED-MODE OSCILLATIONS IN FAR-FROM-EQUILIBRIUM SYSTEMS

被引:74
作者
GASPARD, P
WANG, XJ
机构
关键词
D O I
10.1007/BF01010405
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:151 / 199
页数:49
相关论文
共 46 条
[1]   EXPERIMENTAL-EVIDENCE FOR HOMOCLINIC CHAOS IN THE BELOUSOV-ZHABOTINSKII REACTION [J].
ARGOUL, F ;
ARNEODO, A ;
RICHETTI, P .
PHYSICS LETTERS A, 1987, 120 (06) :269-275
[2]   OSCILLATORS WITH CHAOTIC BEHAVIOR - AN ILLUSTRATION OF A THEOREM BY SHILNIKOV [J].
ARNEODO, A ;
COULLET, P ;
TRESSER, C .
JOURNAL OF STATISTICAL PHYSICS, 1982, 27 (01) :171-182
[3]   ON THE RATE OF APPROACH TO HOMOCLINIC TANGENCY [J].
CURRY, JH ;
JOHNSON, JR .
PHYSICS LETTERS A, 1982, 92 (05) :217-220
[4]   THE STUDY OF PERIODIC-ORBITS OF DYNAMICAL-SYSTEMS - THE USE OF A COMPUTER [J].
DEGREGORIO, S .
JOURNAL OF STATISTICAL PHYSICS, 1985, 38 (5-6) :947-972
[5]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[6]   UNIVERSAL METRIC PROPERTIES OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1979, 21 (06) :669-706
[7]  
FOURNIER D, 1984, CR ACAD SCI I-MATH, V298, P253
[8]   BIFURCATION PHENOMENA NEAR HOMOCLINIC SYSTEMS - A 2-PARAMETER ANALYSIS [J].
GASPARD, P ;
KAPRAL, R ;
NICOLIS, G .
JOURNAL OF STATISTICAL PHYSICS, 1984, 35 (5-6) :697-727
[9]   WHAT CAN WE LEARN FROM HOMOCLINIC ORBITS IN CHAOTIC DYNAMICS [J].
GASPARD, P ;
NICOLIS, G .
JOURNAL OF STATISTICAL PHYSICS, 1983, 31 (03) :499-518
[10]   GENERATION OF A COUNTABLE SET OF HOMOCLINIC FLOWS THROUGH BIFURCATION [J].
GASPARD, P .
PHYSICS LETTERS A, 1983, 97 (1-2) :1-4