From bacteria to man: Archaic proton-dependent peptide transporters at work

被引:150
作者
Daniel, H [1 ]
Spanier, B [1 ]
Kottra, G [1 ]
Weitz, D [1 ]
机构
[1] Tech Univ Munich, Dept Food & Nutr, Mol Nutr Unit, Freising Weihenstephan, Germany
关键词
D O I
10.1152/physiol.00054.2005
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Uptake of nutrients into cells is essential to life and occurs in all organisms at the expense of energy. Whereas in most prokaryotic and simple eukaryotic cells electrochemical transmembrane proton gradients provide the central driving force for nutrient uptake, in higher eukaryotes it is more frequently coupled to sodium movement along the transmembrane sodium gradient, occurs via uniport mechanisms driven by the substrate gradient only, or is linked to the countertransport of a similar organic solute. With the cloning of a large number of mammalian nutrient transport proteins, it became obvious that a few "archaic" transporters that utilize a transmembrane proton gradient for nutrient transport into cells can still be found in mammals. The present review focuses on the electrogenic peptide transporters as the best studied examples of proton-dependent nutrient transporters in mammals and summarizes the most recent findings on their physiological importance. Taking peptide transport as a general phenomenon found in nature, we also include peptide transport mechanisms in bacteria, yeast, invertebrates, and lower vertebrates, which are not that often addressed in physiology journals.
引用
收藏
页码:93 / 102
页数:10
相关论文
共 77 条
[1]   Identification of TOR signaling complexes: more TORC for the cell growth engine [J].
Abraham, RT .
CELL, 2002, 111 (01) :9-12
[2]   Regulation of expression of the intestinal oligopeptide transporter (Pept-1) in health and disease [J].
Adibi, SA .
AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2003, 285 (05) :G779-G788
[3]   A RECOGNITION COMPONENT OF THE UBIQUITIN SYSTEM IS REQUIRED FOR PEPTIDE-TRANSPORT IN SACCHAROMYCES-CEREVISIAE [J].
ALAGRAMAM, K ;
NAIDER, F ;
BECKER, JM .
MOLECULAR MICROBIOLOGY, 1995, 15 (02) :225-234
[4]   Conformational and spacial preferences for substrates of PepT1 [J].
Bailey, PD ;
Boyd, CAR ;
Collier, ID ;
George, JG ;
Kellett, GL ;
Meredith, D ;
Morgan, KM ;
Pettecrew, R ;
Price, RA ;
Pritchard, RG .
CHEMICAL COMMUNICATIONS, 2005, (42) :5352-5354
[5]   Insulin/IGF-I-signaling pathway:: an evolutionarily conserved mechanism of longevity from yeast to humans [J].
Barbieri, M ;
Bonafè, M ;
Franceschi, C ;
Paolisso, G .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2003, 285 (05) :E1064-E1071
[6]   THE RECOGNITION COMPONENT OF THE N-END RULE PATHWAY [J].
BARTEL, B ;
WUNNING, I ;
VARSHAVSKY, A .
EMBO JOURNAL, 1990, 9 (10) :3179-3189
[7]   Three-dimensional quantitative structure-activity relationship analyses of β-lactam antibiotics and tripeptides as substrates of the mammalian H+/peptide cotransporter PEPT1 [J].
Biegel, A ;
Gebauer, S ;
Hartrodt, B ;
Brandsch, M ;
Neubert, K ;
Thondorf, I .
JOURNAL OF MEDICINAL CHEMISTRY, 2005, 48 (13) :4410-4419
[8]   Expression cloning and functional characterization of the kidney cortex high-affinity proton-coupled peptide transporter [J].
Boll, M ;
Herget, M ;
Wagener, M ;
Weber, WM ;
Markovich, D ;
Biber, J ;
Clauss, W ;
Murer, H ;
Daniel, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (01) :284-289
[9]   Hgt1p, a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae [J].
Bourbouloux, A ;
Shahi, P ;
Chakladar, A ;
Delrot, S ;
Bachhawat, AH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (18) :13259-13265
[10]   Assessing metabolic activity in aging Caenorhabditis elegans:: concepts and controversies [J].
Braeckman, BP ;
Houthoofd, K ;
Vanfleteren, JR .
AGING CELL, 2002, 1 (02) :82-88