THE NEXT GENERATION OF SIMILARITY MEASURES THAT FULLY EXPLORE THE SEMANTICS IN BIOMEDICAL ONTOLOGIES

被引:15
作者
Couto, Francisco M. [1 ]
Sofia Pinto, H. [2 ]
机构
[1] Univ Lisbon, Fac Ciencias, Dept Informat, P-1749016 Lisbon, Portugal
[2] Inst Super Tecn, Dept Informat Engn, INESC ID, P-1000029 Lisbon, Portugal
关键词
Ontologies; semantic similarity; functional similarity; description logics; GENE ONTOLOGY; PROTEIN FUNCTION; INFORMATION; SEQUENCE; DATABASE;
D O I
10.1142/S0219720013710017
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
There is a prominent trend to augment and improve the formality of biomedical ontologies. For example, this is shown by the current effort on adding description logic axioms, such as disjointness. One of the key ontology applications that can take advantage of this effort is the conceptual (functional) similarity measurement. The presence of description logic axioms in biomedical ontologies make the current structural or extensional approaches weaker and further away from providing sound semantics-based similarity measures. Although beneficial in small ontologies, the exploration of description logic axioms by semantics-based similarity measures is computational expensive. This limitation is critical for biomedical ontologies that normally contain thousands of concepts. Thus in the process of gaining their rightful place, biomedical functional similarity measures have to take the journey of finding how this rich and powerful knowledge can be fully explored while keeping feasible computational costs. This manuscript aims at promoting and guiding the development of compelling tools that deliver what the biomedical community will require in a near future: a next-generation of biomedical similarity measures that efficiently and fully explore the semantics present in biomedical ontologies.
引用
收藏
页数:11
相关论文
共 56 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   A GRAPH-BASED SEMANTIC SIMILARITY MEASURE FOR THE GENE ONTOLOGY [J].
Alvarez, Marco A. ;
Yan, Changhui .
JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2011, 9 (06) :681-695
[3]   Literature mining, ontologies and information visualization for drug repurposing [J].
Andronis, Christos ;
Sharma, Anuj ;
Virvilis, Vassilis ;
Deftereos, Spyros ;
Persidis, Aris .
BRIEFINGS IN BIOINFORMATICS, 2011, 12 (04) :357-368
[4]  
[Anonymous], 1995, arXiv
[5]  
[Anonymous], 2007, ONTOLOGY MATCHING
[6]  
Araujo R, 2007, P WORKSH ONT MATCH O
[7]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[8]   The Gene Ontology: enhancements for 2011 [J].
Blake, J. A. ;
Dolan, M. ;
Drabkin, H. ;
Hill, D. P. ;
Ni, L. ;
Sitnikov, D. ;
Burgess, S. ;
Buza, T. ;
Gresham, C. ;
McCarthy, F. ;
Pillai, L. ;
Wang, H. ;
Carbon, S. ;
Lewis, S. E. ;
Mungall, C. J. ;
Gaudet, P. ;
Chisholm, R. L. ;
Fey, P. ;
Kibbe, W. A. ;
Basu, S. ;
Siegele, D. A. ;
McIntosh, B. K. ;
Renfro, D. P. ;
Zweifel, A. E. ;
Hu, J. C. ;
Brown, N. H. ;
Tweedie, S. ;
Alam-Faruque, Y. ;
Apweiler, R. ;
Auchinchloss, A. ;
Axelsen, K. ;
Argoud-Puy, G. ;
Bely, B. ;
Blatter, M. -C. ;
Bougueleret, L. ;
Boutet, E. ;
Branconi-Quintaje, S. ;
Breuza, L. ;
Bridge, A. ;
Browne, P. ;
Chan, W. M. ;
Coudert, E. ;
Cusin, I. ;
Dimmer, E. ;
Duek-Roggli, P. ;
Eberhardt, R. ;
Estreicher, A. ;
Famiglietti, L. ;
Ferro-Rojas, S. ;
Feuermann, M. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) :D559-D564
[9]   Reasoning with bio-ontologies: using relational closure rules to enable practical querying [J].
Blonde, Ward ;
Mironov, Vladimir ;
Venkatesan, Aravind ;
Antezana, Erick ;
De Baets, Bernard ;
Kuiper, Martin .
BIOINFORMATICS, 2011, 27 (11) :1562-1568
[10]  
Bock H.H., 2000, Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data