Detecting reliable gene interactions by a hierarchy of Bayesian network classifiers

被引:20
作者
Armananzas, Ruben [1 ]
Inza, Inaki [1 ]
Larranaga, Pedro [2 ]
机构
[1] Univ Basque Country, Dept Comp Sci & Artificial Intelligence, Donostia San Sebastian 20018, Gipuzkoa, Spain
[2] Tech Univ Madrid, Dept Artificial Intelligence, Madrid, Spain
关键词
Bayesian network classifiers; robust arc identification; gene interactions; DNA microarrays; knowledge discovery;
D O I
10.1016/j.cmpb.2008.02.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The main purpose of a gene interaction network is to map the relationships of the genes that are out of sight when a genomic study is tackled. DNA microarrays allow the measure of gene expression of thousands of genes at the same time. These data constitute the numeric seed for the induction of the gene networks. in this paper, we propose a new approach to build gene networks by means of Bayesian classifiers, variable selection and bootstrap resampling. The interactions induced by the Bayesian classifiers are based both on the expression levels and on the phenotype information of the supervised variable. Feature selection and bootstrap resampling add reliability and robustness to the overall process removing the false positive findings. The consensus among all the induced models produces a hierarchy of dependences and, thus, of variables. Biologists can define the depth level of the model hierarchy so the set of interactions and gene 3 involved can vary from a sparse to a dense set. Experimental results show how these networks perform well on classification tasks. The biological validation matches previous biological findings and opens new hypothesis for future studies. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:110 / 121
页数:12
相关论文
共 65 条
[11]  
Causton HC., 2003, MICROARRAY GENE EXPR
[12]  
Duda R., 1973, PATTERN RECOGN
[13]   1977 RIETZ LECTURE - BOOTSTRAP METHODS - ANOTHER LOOK AT THE JACKKNIFE [J].
EFRON, B .
ANNALS OF STATISTICS, 1979, 7 (01) :1-26
[14]   Expression of Snail protein in tumor-stroma interface [J].
Franci, C. ;
Takkunen, M. ;
Dave, N. ;
Alameda, F. ;
Gomez, S. ;
Rodriguez, R. ;
Escriva, M. ;
Montserrat-Sentis, B. ;
Baro, T. ;
Garrido, M. ;
Bonilla, F. ;
Virtanen, I. ;
Garcia de Herreros, A. .
ONCOGENE, 2006, 25 (37) :5134-5144
[15]   Inferring cellular networks using probabilistic graphical models [J].
Friedman, N .
SCIENCE, 2004, 303 (5659) :799-805
[16]   Using Bayesian networks to analyze expression data [J].
Friedman, N ;
Linial, M ;
Nachman, I ;
Pe'er, D .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (3-4) :601-620
[17]   Bayesian network classifiers [J].
Friedman, N ;
Geiger, D ;
Goldszmidt, M .
MACHINE LEARNING, 1997, 29 (2-3) :131-163
[18]  
Friedman N, 1999, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, P196
[19]  
Fujita M, 2001, CANCER RES, V61, P7722
[20]   Single base substitutions at the initiator codon in the mitochondrial acetoacetyl-CoA thiolase (ACAT1/T2) gene result in production of varying amounts of wild-type T2 polypeptide [J].
Fukao, T ;
Matsuo, N ;
Zhang, GX ;
Urasawa, R ;
Kubo, T ;
Kohno, Y ;
Kondo, N .
HUMAN MUTATION, 2003, 21 (06) :587-592