Efficient numerical integrators for stochastic models

被引:41
作者
De Fabritiis, G
Serrano, M
Español, P
Coveney, PV
机构
[1] UCL, Dept Chem, Ctr Computat Sci, London WC1H 0AJ, England
[2] Univ Nacl Educ Distancia, Dept Fis Fundamental, Madrid 28080, Spain
基金
英国工程与自然科学研究理事会;
关键词
trotter formula; numerical simulations; stochastic differential equations; mesoscopic models; dissipative particle dynamics; Brownian dynamics;
D O I
10.1016/j.physa.2005.06.090
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The efficient simulation of models defined in terms of stochastic differential equations (SDEs) depends critically oil an efficient integration scheme. In this article, we investigate under which conditions the integration schemes for general SDEs can be derived using the Trotter expansion. It follows that, in the stochastic case, some care is required in splitting the stochastic generator. We test the Trotter integrators on an energy-conserving Brownian model and derive a new numerical scheme for dissipative particle dynamics. We find that the stochastic Trotter scheme provides a mathematically correct and easy-to-use method which should find wide applicability. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:429 / 440
页数:12
相关论文
共 27 条
[1]  
Allen M. P., 1987, J COMPUTER SIMULATIO, DOI DOI 10.2307/2938686
[2]   Towards better integrators for dissipative particle dynamics simulations [J].
Besold, G ;
Vattulainen, I ;
Karttunen, M ;
Polson, JM .
PHYSICAL REVIEW E, 2000, 62 (06) :R7611-R7614
[3]   STOCHASTIC BOUNDARY-CONDITIONS FOR MOLECULAR-DYNAMICS SIMULATIONS OF ST2 WATER [J].
BRUNGER, A ;
BROOKS, CL ;
KARPLUS, M .
CHEMICAL PHYSICS LETTERS, 1984, 105 (05) :495-500
[4]   SYMPLECTIC INTEGRATION OF HAMILTONIAN-SYSTEMS [J].
CHANNELL, PJ ;
SCOVEL, C .
NONLINEARITY, 1990, 3 (02) :231-259
[5]   Dynamical geometry for multiscale dissipative particle dynamics [J].
De Fabritiis, G ;
Coveney, PV .
COMPUTER PHYSICS COMMUNICATIONS, 2003, 153 (02) :209-226
[6]   STATISTICAL-MECHANICS OF DISSIPATIVE PARTICLE DYNAMICS [J].
ESPANOL, P ;
WARREN, P .
EUROPHYSICS LETTERS, 1995, 30 (04) :191-196
[7]   Smoothed dissipative particle dynamics -: art. no. 026705 [J].
Español, P ;
Revenga, M .
PHYSICAL REVIEW E, 2003, 67 (02) :12
[8]   Foundations of dissipative particle dynamics [J].
Flekkoy, EG ;
Coveney, PV ;
De Fabritiis, G .
PHYSICAL REVIEW E, 2000, 62 (02) :2140-2157
[9]   Fourth-order algorithms for solving the multivariable Langevin equation and the Kramers equation [J].
Forbert, HA ;
Chin, SA .
PHYSICAL REVIEW E, 2001, 63 (01) :1-7
[10]   FAST, ACCURATE ALGORITHM FOR NUMERICAL-SIMULATION OF EXPONENTIALLY CORRELATED COLORED NOISE [J].
FOX, RF ;
GATLAND, IR ;
ROY, R ;
VEMURI, G .
PHYSICAL REVIEW A, 1988, 38 (11) :5938-5940