Bayesian Estimation Supersedes the t Test

被引:1088
作者
Kruschke, John K. [1 ]
机构
[1] Indiana Univ, Bloomington, IN 47405 USA
关键词
Bayesian statistics; effect size; robust estimation; Bayes factor; confidence interval; SAMPLE-SIZE DETERMINATION; CONFIDENCE-INTERVALS; STATISTICAL-INFERENCE; PRIOR SENSITIVITY; POWER; MODEL; HYPOTHESIS; PSYCHOLOGY; PROBABILITY; SIMULATION;
D O I
10.1037/a0029146
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Bayesian estimation for 2 groups provides complete distributions of credible values for the effect size, group means and their difference, standard deviations and their difference, and the normality of the data. The method handles outliers. The decision rule can accept the null value (unlike traditional t tests) when certainty in the estimate is high (unlike Bayesian model comparison using Bayes factors). The method also yields precise estimates of statistical power for various research goals. The software and programs are free and run on Macintosh, Windows, and Linux platforms.
引用
收藏
页码:573 / 603
页数:31
相关论文
共 94 条
[41]  
Jeffreys H., 1961, THEORY PROBABILITY
[42]   A skew extension of the t-distribution, with applications [J].
Jones, MC ;
Faddy, MJ .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 :159-174
[43]   SAMPLE-SIZE CALCULATIONS FOR BINOMIAL PROPORTIONS VIA HIGHEST POSTERIOR DENSITY INTERVALS [J].
JOSEPH, L ;
WOLFSON, DB ;
DUBERGER, R .
STATISTICIAN, 1995, 44 (02) :143-154
[44]  
Joseph L., 1995, J ROY STAT SOC D-STA, V44, P167
[45]   BAYES FACTORS [J].
KASS, RE ;
RAFTERY, AE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) :773-795
[46]  
Kruschke J. K., BRIT J MATH IN PRESS
[47]  
Kruschke J. K., 2005, EXCEL WORKBOOKS GENE
[48]   Bayesian Assessment of Null Values Via Parameter Estimation and Model Comparison [J].
Kruschke, John K. .
PERSPECTIVES ON PSYCHOLOGICAL SCIENCE, 2011, 6 (03) :299-312
[49]   Introduction to Special Section on Bayesian Data Analysis [J].
Kruschke, John K. .
PERSPECTIVES ON PSYCHOLOGICAL SCIENCE, 2011, 6 (03) :272-273
[50]   Bayesian data analysis [J].
Kruschke, John K. .
WILEY INTERDISCIPLINARY REVIEWS-COGNITIVE SCIENCE, 2010, 1 (05) :658-676