Three-dimensional optoelectronic stacked processor by use of free-space optical interconnection and three-dimensional VLSI chip stacks

被引:23
作者
Li, GQ [1 ]
Huang, DW
Yuceturk, E
Marchand, PJ
Esener, SC
Ozguz, VH
Liu, Y
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
[2] Irvine Sensors Corp, Costa Mesa, CA 92626 USA
[3] Honeywell Technol Ctr, Plymouth, MN 55441 USA
关键词
D O I
10.1364/AO.41.000348
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a demonstration system under the three-dimensional (3D) optoelectronic stacked processor consortium. The processor combines the advantages of optics in global, high-density, high-speed parallel interconnections with the density and computational power of 3D chip stacks. In particular, a compact and scalable optoelectronic switching system with a high bandwidth is designed. The system consists of three silicon chip stacks, each integrated with a single vertical-cavity-surface-emitting-laser-metal-semiconductor-metal detector array and an optical interconnection module. Any input signal at one end stack can be switched through the central crossbar stack to any output channel on the opposite end stack. The crossbar bandwidth is designed to be 256 Gb/s. For the free-space optical interconnection, a novel folded hybrid micro-macro optical system with a concave reflection mirror has been designed. The optics module can provide a high resolution, a large field of view, a high link efficiency, and low optical cross talk. It is also symmetric and modular. Off-the-shelf macro-optical components are used. The concave reflection mirror can significantly improve the image quality and tolerate a large misalignment of the optical components, and it can also compensate for the lateral shift of the chip stacks. Scaling of the macrolens can be used to adjust the interconnection length between the chip stacks or make the system more compact. The components are easy to align, and only passive alignment is required. Optics and electronics are separated until the final assembly step, and the optomechanic module can be removed and replaced. By use of 3D chip stacks, commercially available optical components, and simple passive packaging techniques, it is possible to achieve a high-performance optoelectronic switching system. (C) 2002 Optical Society of America.
引用
收藏
页码:348 / 360
页数:13
相关论文
共 35 条
[1]   Components for the implementation of free-space optical crossbars [J].
Barrett, CP ;
Blair, P ;
Buller, GS ;
Neilson, DT ;
Robertson, B ;
Smith, EC ;
Taghizadeh, MR ;
Walker, AC .
APPLIED OPTICS, 1996, 35 (35) :6934-6944
[2]   Parallel distributed free-space optoelectronic compute engine using flat "plug-on-top" optics package [J].
Berger, C ;
Ekman, J ;
Wang, X ;
Marchand, P ;
Spaanenburg, H ;
Kiamilev, F ;
Esener, S .
OPTICS IN COMPUTING 2000, 2000, 4089 :1037-1043
[3]   APPLICATION OF 3-DIMENSIONAL MICRO-OPTICAL COMPONENTS FORMED BY LITHOGRAPHY, ELECTROFORMING, AND PLASTIC MOLDING [J].
BRENNER, KH ;
KUFNER, M ;
KUFNER, S ;
MOISEL, J ;
MULLER, A ;
SINZINGER, S ;
TESTORF, M ;
GOTTERT, J ;
MOHR, J .
APPLIED OPTICS, 1993, 32 (32) :6464-6469
[4]   Fully embedded board-level guided-wave optoelectronic interconnects [J].
Chen, RT ;
Lin, L ;
Choi, C ;
Liu, YJJ ;
Bihari, B ;
Wu, L ;
Tang, SN ;
Wickman, R ;
Picor, B ;
Hibbs-Brenner, MK ;
Bristow, J ;
Liu, YS .
PROCEEDINGS OF THE IEEE, 2000, 88 (06) :780-793
[5]   2 X 8 PHOTOREFRACTIVE RECONFIGURABLE INTERCONNECT WITH LASER-DIODES [J].
CHIOU, AE ;
YEH, P .
APPLIED OPTICS, 1992, 31 (26) :5536-5541
[6]   3D OptoElectronic Stacked Processors: design and analysis [J].
Esener, S ;
Marchand, P .
OPTICS IN COMPUTING 98, 1998, 3490 :541-545
[7]   OPTICAL INTERCONNECTIONS FOR VLSI SYSTEMS [J].
GOODMAN, JW ;
LEONBERGER, FJ ;
KUNG, SY ;
ATHALE, RA .
PROCEEDINGS OF THE IEEE, 1984, 72 (07) :850-866
[8]   Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors [J].
Haney, MW ;
Christensen, MP ;
Milojkovic, P ;
Ekman, J ;
Chandramani, P ;
Rozier, R ;
Kiamilev, F ;
Liu, Y ;
Hibbs-Brenner, M .
APPLIED OPTICS, 1999, 38 (29) :6190-6200
[9]   MULTICHANNEL ACOUSTOOPTIC CROSSBAR SWITCH [J].
HARRIS, DO .
APPLIED OPTICS, 1991, 30 (29) :4245-4256
[10]   FREE-SPACE DIGITAL OPTICAL-SYSTEMS [J].
HINTON, HS ;
CLOONAN, TJ ;
MCCORMICK, FB ;
LENTINE, AL ;
TOOLEY, FAP .
PROCEEDINGS OF THE IEEE, 1994, 82 (11) :1632-1649