Toward a structural understanding of the dehydratase mechanism

被引:91
作者
Allard, STM
Beis, K
Giraud, MF
Hegeman, AD
Gross, JW
Wilmouth, RC
Whitfield, C
Graninger, M
Messner, P
Allen, AG
Maskell, DJ
Naismith, JH [1 ]
机构
[1] Univ St Andrews, Ctr Biomol Sci, St Andrews KY16 9ST, Fife, Scotland
[2] Univ Wisconsin, Dept Biochem, Madison, WI 53705 USA
[3] Univ Oxford, Dyson Perrins Lab, Oxford OX1 3QY, England
[4] Univ Oxford, Oxford Ctr Mol Sci, Oxford OX1 3QY, England
[5] Univ Guelph, Dept Microbiol, Guelph, ON N1G 2W1, Canada
[6] Univ Bodenkultur Wien, Zentrum Ultrastrukturforsch, A-1180 Vienna, Austria
[7] Univ Bodenkultur Wien, Ludwig Boltzmann Inst Mol Nanotechnol, A-1180 Vienna, Austria
[8] Univ Cambridge, Dept Clin Vet Med, Ctr Vet Sci, Cambridge CB3 0ES, England
基金
加拿大自然科学与工程研究理事会; 英国惠康基金;
关键词
D O I
10.1016/S0969-2126(01)00694-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
dTDP-D-glucose 4,6-dehydratase (RmIB) was first identified in the L-rhamnose biosynthetic pathway, where it catalyzes the conversion of dTDP-D-glucose into dTDP-4-keto-6-deoxy-D-glucose. The structures of RmIB from Salmonella enterica serovar Typhimurium in complex with substrate deoxythymidine 5'-diphospho-D-glucose (dTDP-D-glucose) and deoxythymidine 5'-diphosphate (dTDP), and RmIB from Streptococcus suis serotype 2 in complex with dTDP-D-glucose, dTDP, and deoxythymidine 5'-diphospho-D-pyrano-xylose (dTDP-xylose) have all been solved at resolutions between 1.8 Angstrom and 2.4 Angstrom. The structures show that the active sites are highly conserved. Importantly, the structures show that the active site tyrosine functions directly as the active site base, and an aspartic and glutamic acid pairing accomplishes the dehydration step of the enzyme mechanism. We conclude that the substrate is required to move within the active site to complete the catalytic cycle and that this movement is driven by the elimination of water. The results provide insight into members of the SDR superfamily.
引用
收藏
页码:81 / 92
页数:12
相关论文
共 67 条
  • [51] Sambrook J., 2012, MOL CLONING LAB MANU
  • [52] Smith HE, 1999, INFECT IMMUN, V67, P1750
  • [53] SNIPES CE, 1977, J BIOL CHEM, V252, P8113
  • [54] Structural and kinetic analysis of Escherichia coli GDP-mannose 4,6-dehydratase provides insights into the enzyme's catalytic mechanism and regulation by GDP-fucose
    Somoza, JR
    Menon, S
    Schmidt, H
    Joseph-McCarthy, D
    Dessen, A
    Stahl, ML
    Somers, WS
    Sullivan, FX
    [J]. STRUCTURE, 2000, 8 (02) : 123 - 135
  • [55] Sugar nucleotide-modifying enzymes
    Tanner, ME
    [J]. CURRENT ORGANIC CHEMISTRY, 2001, 5 (02) : 169 - 192
  • [56] Molecular structures of the S124A, S124T, and S124V site-directed mutants of UDP-galactose 4-epimerase from Escherichia coli
    Thoden, JB
    Gulick, AM
    Holden, HM
    [J]. BIOCHEMISTRY, 1997, 36 (35) : 10685 - 10695
  • [57] Crystallographic evidence for Tyr 157 functioning as the active site base in human UDP-galactose 4-epimerase
    Thoden, JB
    Wohlers, TM
    Fridovich-Keil, JL
    Holden, HM
    [J]. BIOCHEMISTRY, 2000, 39 (19) : 5691 - 5701
  • [58] Structural analysis of UDP-sugar binding to UDP-galactose 4-epimerase from Escherichia coli
    Thoden, JB
    Hegeman, AD
    Wesenberg, G
    Chapeau, MC
    Frey, PA
    Holden, HM
    [J]. BIOCHEMISTRY, 1997, 36 (21) : 6294 - 6304
  • [59] High-resolution X-ray structure of UDP-galactose 4-epimerase complexed with UDP-phenol
    Thoden, JB
    Frey, PA
    Holden, HM
    [J]. PROTEIN SCIENCE, 1996, 5 (11) : 2149 - 2161
  • [60] Crystal structures of the oxidized and reduced forms of UDP-galactose 4-epimerase isolated from Escherichia coli
    Thoden, JB
    Frey, PA
    Holden, HM
    [J]. BIOCHEMISTRY, 1996, 35 (08) : 2557 - 2566