The bifurcation diagrams for the Ginzburg-Landau system of superconductivity

被引:14
作者
Aftalion, A
Du, Q
机构
[1] Univ Paris 06, CNRS, F-75252 Paris 05, France
[2] Univ Paris 06, Anal Numer Lab, F-75252 Paris 05, France
[3] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
Ginzburg-Landau model; superconductivity; finite element method;
D O I
10.1016/S0167-2789(01)00385-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we provide the different types of bifurcation diagrams for a superconducting cylinder placed in a magnetic field along the direction of the axis of the cylinder. The computation is based on the numerical solutions of the Ginzburg-Landau model by the finite element method. The response of the material depends on the values of the exterior field, the Ginzburg-Landau parameter and the size of the domain. The solution branches in the different regions of the bifurcation diagrams are analyzed and open mathematical problems are mentioned. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:94 / 105
页数:12
相关论文
共 39 条
[1]   On the solutions of the one-dimensional Ginzburg-Landau equations for superconductivity [J].
Aftalion, A ;
Troy, WC .
PHYSICA D, 1999, 132 (1-2) :214-232
[2]   On the symmetry and uniqueness of solutions of the Ginzburg-Landau equations for small domains [J].
Aftalion, A ;
Dancer, EN .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (01) :1-14
[3]   Asymptotic analysis of a secondary bifurcation of the one-dimensional Ginzburg-Landau equations of superconductivity [J].
Aftalion, A ;
Chapman, SJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (04) :1157-1176
[4]   Vortices in Ginzburg-Landau billiards [J].
Akkermans, E ;
Mallick, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (41) :7133-7143
[5]  
ALMEIDA L, UNPUB
[6]   Vortex states in superconducting rings [J].
Baelus, BJ ;
Peeters, FM ;
Schweigert, VA .
PHYSICAL REVIEW B, 2000, 61 (14) :9734-9747
[7]   Stable nucleation for the Ginzburg-Landau system with an applied magnetic field [J].
Bauman, P ;
Phillips, D ;
Tang, Q .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 142 (01) :1-43
[8]   Onset of superconductivity in decreasing fields for general domains [J].
Bernoff, A ;
Sternberg, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (03) :1272-1284
[9]  
BOLLEY C, 1993, ANN I H POINCARE-PHY, V58, P189
[10]  
CHAPMAN J, 1995, ADV MATH SCI APPL, V5, P193