Synthetic analog computation in living cells

被引:304
作者
Daniel, Ramiz [1 ,2 ,3 ]
Rubens, Jacob R. [2 ,3 ,4 ]
Sarpeshkar, Rahul [1 ,3 ,4 ,5 ,6 ,7 ]
Lu, Timothy K. [2 ,3 ,4 ,5 ,6 ,8 ]
机构
[1] MIT, Elect Res Lab, Analog Circuits & Biol Syst Grp, Cambridge, MA 02139 USA
[2] MIT, Elect Res Lab, Synthet Biol Grp, Cambridge, MA 02139 USA
[3] MIT, Synthet Biol Ctr, Cambridge, MA 02139 USA
[4] MIT, MIT Microbiol Program, Cambridge, MA 02139 USA
[5] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[6] MIT, MIT Computat & Syst Biol Program, Cambridge, MA 02139 USA
[7] MIT, MIT Biophys Program, Cambridge, MA 02139 USA
[8] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
BIOLOGY; CIRCUIT; NETWORK; MOTIFS;
D O I
10.1038/nature12148
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A central goal of synthetic biology is to achieve multi-signal integration and processing in living cells for diagnostic, therapeutic and biotechnology applications(1). Digital logic has been used to build small-scale circuits, but other frameworks may be needed for efficient computation in the resource-limited environments of cells(2,3). Here we demonstrate that synthetic analog gene circuits can be engineered to execute sophisticated computational functions in living cells using just three transcription factors. Such synthetic analog gene circuits exploit feedback to implement logarithmically linear sensing, addition, ratiometric and power-law computations. The circuits exhibit Weber's law behaviour as in natural biological systems(4), operate over a wide dynamic range of up to four orders of magnitude and can be designed to have tunable transfer functions. Our circuits can be composed to implement higher-order functions that are well described by both intricate biochemical models and simple mathematical functions. By exploiting analog building-block functions that are already naturally present in cells(3,5), this approach efficiently implements arithmetic operations and complex functions in the logarithmic domain. Such circuits may lead to new applications for synthetic biology and biotechnology that require complex computations with limited parts, need wide-dynamic-range biosensing or would benefit from the fine control of gene expression.
引用
收藏
页码:619 / +
页数:6
相关论文
共 30 条
[1]   Programmable single-cell mammalian biocomputers [J].
Auslaender, Simon ;
Auslaender, David ;
Mueller, Marius ;
Wieland, Markus ;
Fussenegger, Martin .
NATURE, 2012, 487 (7405) :123-+
[2]   Refinement and standardization of synthetic biological parts and devices [J].
Canton, Barry ;
Labno, Anna ;
Endy, Drew .
NATURE BIOTECHNOLOGY, 2008, 26 (07) :787-793
[3]   Contextualizing context for synthetic biology - identifying causes of failure of synthetic biological systems [J].
Cardinale, Stefano ;
Arkin, Adam Paul .
BIOTECHNOLOGY JOURNAL, 2012, 7 (07) :856-866
[4]   Synthetic biology: advancing biological frontiers by building synthetic systems [J].
Chen, Yvonne Y. ;
Galloway, Kate E. ;
Smolke, Christina D. .
GENOME BIOLOGY, 2012, 13 (02)
[5]   Neural coding:: Hybrid analog and digital signalling in axons [J].
Clark, Beverley ;
Hausser, Michael .
CURRENT BIOLOGY, 2006, 16 (15) :R585-R588
[6]  
Daniel R, 2011, BIOMED CIRC SYST C, P333, DOI 10.1109/BioCAS.2011.6107795
[7]   Reprogramming control of an allosteric signaling switch through modular recombination [J].
Dueber, JE ;
Yeh, BJ ;
Chak, K ;
Lim, WA .
SCIENCE, 2003, 301 (5641) :1904-1908
[8]   A synthetic oscillatory network of transcriptional regulators [J].
Elowitz, MB ;
Leibler, S .
NATURE, 2000, 403 (6767) :335-338
[9]   Signaling Motifs and Weber's Law [J].
Ferrell, James E., Jr. .
MOLECULAR CELL, 2009, 36 (05) :724-727
[10]   Noncooperative Interactions between Transcription Factors and Clustered DNA Binding Sites Enable Graded Transcriptional Responses to Environmental Inputs [J].
Giorgetti, Luca ;
Siggers, Trevor ;
Tiana, Guido ;
Caprara, Greta ;
Notarbartolo, Samuele ;
Corona, Teresa ;
Pasparakis, Manolis ;
Milani, Paolo ;
Bulyk, Martha L. ;
Natoli, Gioacchino .
MOLECULAR CELL, 2010, 37 (03) :418-428