Vortex derivatives

被引:15
作者
Freund, I [1 ]
机构
[1] BAR ILAN UNIV, DEPT PHYS, IL-52900 RAMAT GAN, ISRAEL
关键词
D O I
10.1016/S0030-4018(96)00739-0
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It has long been known that optical vortices are located at intersections of the zero crossings of the real and imaginary parts of the wave function. By examining singular (divergent) phase and other derivatives of all orders, we now show that there are infinitely many additional zero crossings passing through every vortex. Each zero crossing makes its own topological demands on the wave function, leading to infinitely many topological constraints on the wave field structure.
引用
收藏
页码:118 / 126
页数:9
相关论文
共 44 条
[21]   OPTICAL VORTICES IN GAUSSIAN RANDOM WAVE-FIELDS - STATISTICAL PROBABILITY DENSITIES [J].
FREUND, I .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (05) :1644-1652
[22]   WAVE-FIELD PHASE SINGULARITIES - THE SIGN PRINCIPLE [J].
FREUND, I ;
SHVARTSMAN, N .
PHYSICAL REVIEW A, 1994, 50 (06) :5164-5172
[23]   STRUCTURAL CORRELATIONS IN GAUSSIAN RANDOM WAVE-FIELDS [J].
FREUND, I ;
SHVARTSMAN, N .
PHYSICAL REVIEW E, 1995, 51 (04) :3770-3773
[24]   AMPLITUDE TOPOLOGICAL SINGULARITIES IN RANDOM ELECTROMAGNETIC WAVE-FIELDS [J].
FREUND, I .
PHYSICS LETTERS A, 1995, 198 (02) :139-144
[25]   SADDLES, SINGULARITIES, AND EXTREMA IN RANDOM-PHASE FIELDS [J].
FREUND, I .
PHYSICAL REVIEW E, 1995, 52 (03) :2348-2360
[26]   Optical vortex trapping of particles [J].
Gahagan, KT ;
Swartzlander, GA .
OPTICS LETTERS, 1996, 21 (11) :827-829
[27]   BESSEL-GAUSS BEAMS [J].
GORI, F ;
GUATTARI, G ;
PADOVANI, C .
OPTICS COMMUNICATIONS, 1987, 64 (06) :491-495
[28]  
HALPERIN BI, 1981, PHYSICS DEFECTS, P814
[29]   OPTICAL VORTICES AND THEIR PROPAGATION [J].
INDEBETOUW, G .
JOURNAL OF MODERN OPTICS, 1993, 40 (01) :73-87
[30]  
KOSTERLITZ JM, 1978, PROG LOW TEMP PHYS B, V7, P371, DOI [10.1016/S0079-6417(08)60175-4, DOI 10.1016/S0079-6417(08)60175-4]