Finite temperature Mott transition in the Hubbard model in infinite dimensions

被引:112
作者
Rozenberg, MJ
Chitra, R
Kotliar, G
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina
[2] Rutgers State Univ, Serin Phys Lab, Piscataway, NJ 08854 USA
关键词
D O I
10.1103/PhysRevLett.83.3498
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the second order finite temperature Mott transition point in the fully frustrated Hubbard model at half filling, within dynamical mean field theory. Using quantum Monte Carlo simulations and analytical arguments, we show the existence of a finite temperature second order critical point by explicitly demonstrating the existence of a divergent susceptibility as well as by finding coexistence in the low temperature phase. We determine the precise location of the finite temperature Mott critical point in the (U, T) plane. Our study verifies and quantifies a scenario for the Mott transition proposed in earlier studies of this problem.
引用
收藏
页码:3498 / 3501
页数:4
相关论文
共 28 条
[1]   Application of Gutzwiller's variational method to the metal-insulator transition [J].
Brinkman, W. F. ;
Rice, T. M. .
PHYSICAL REVIEW B-SOLID STATE, 1970, 2 (10) :4302-4304
[2]   NEW MODEL HAMILTONIAN FOR THE METAL-INSULATOR-TRANSITION [J].
CASTELLANI, C ;
DICASTRO, C ;
FEINBERG, D ;
RANNINGER, J .
PHYSICAL REVIEW LETTERS, 1979, 43 (26) :1957-1960
[3]   PHYSICAL-PROPERTIES OF THE HALF-FILLED HUBBARD-MODEL IN INFINITE DIMENSIONS [J].
GEORGES, A ;
KRAUTH, W .
PHYSICAL REVIEW B, 1993, 48 (10) :7167-7182
[4]   NUMERICAL-SOLUTION OF THE D=INFINITY HUBBARD-MODEL - EVIDENCE FOR A MOTT TRANSITION [J].
GEORGES, A ;
KRAUTH, W .
PHYSICAL REVIEW LETTERS, 1992, 69 (08) :1240-1243
[5]   Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions [J].
Georges, A ;
Kotliar, G ;
Krauth, W ;
Rozenberg, MJ .
REVIEWS OF MODERN PHYSICS, 1996, 68 (01) :13-125
[6]   HUBBARD-MODEL IN INFINITE DIMENSIONS [J].
GEORGES, A ;
KOTLIAR, G .
PHYSICAL REVIEW B, 1992, 45 (12) :6479-6483
[7]   MONTE-CARLO METHOD FOR MAGNETIC-IMPURITIES IN METALS [J].
HIRSCH, JE ;
FYE, RM .
PHYSICAL REVIEW LETTERS, 1986, 56 (23) :2521-2524
[9]   Metal-insulator transitions [J].
Imada, M ;
Fujimori, A ;
Tokura, Y .
REVIEWS OF MODERN PHYSICS, 1998, 70 (04) :1039-1263
[10]   Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data [J].
Jarrell, M ;
Gubernatis, JE .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1996, 269 (03) :133-195